Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 1.199 Facteur d'impact sur 5 ans: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018026288
pages 435-450

COMPARISON BETWEEN HEAT TRANSFER CHARACTERISTICS OF TiO2/DEIONIZED WATER AND KAOLIN/DEIONIZED WATER NANOFLUIDS IN THE PLATE HEAT EXCHANGER

Ataollah Khanlari
University of Turkish Aeronautical Association, Mechanical Engineering, 06790, Ankara, Turkey
Adnan Sözen
Gazi University, Faculty of Technology, Department of Energy System Engineering, Ankara, Turkey
Halil Ibrahim Variyenli
Gazi University, Technology Faculty, Energy Systems Engineering, 06500, Ankara, Turkey
Metin Gürü
Gazi University, Engineering Faculty, Chemical Engineering, 06500, Ankara, Turkey

RÉSUMÉ

The plate heat exchangers, of high efficiency and small size, with corrugated thin plates are compact-type heat exchangers which were widely used in different sectors of industry. To enhance the heat transfer characteristics of plate heat exchangers, nanofluids can be utilized as working fluids. In this study, the effects of using TiO2/deionized water and kaolin/deionized water nanofluids as working fluids in the plate heat exchanger were experimentally analyzed. In order to illustrate the enhancement rate of heat transfer, the experiments were conducted by using deionized water, TiO2/deionized water, and kaolin/deionized water nanofluids. The experiments were done with varying temperature and fluid flow rate. Each nanofluid has 2% (wt./wt.) nanoparticle content. Also, Triton X-100 was added to the prepared mixture as 0.2% of a final concentration to improve the solubility of nanoparticles. The obtained results showed that a kaolin/deionized water nanofluid had higher thermal performance than TiO2/deionized water nanofluid. The maximum increment in the heat transfer rate using TiO2/deionized water and kaolin/deionized water was 12% and 18%, respectively.


Articles with similar content:

CO2 ABSORPTION/REGENERATION PERFORMANCE ENHANCEMENT BY NANOABSORBENTS
International Heat Transfer Conference 16, Vol.2, 2018, issue
Seonggon Kim, Yong Tae Kang
HEAT TRANSFER STUDIES IN A CLOSED LOOP PULSATING HEAT PIPE
Heat Pipe Science and Technology, An International Journal, Vol.5, 2014, issue 1-4
Bhawna Verma, K. K. Srivastava, V. L. Yadav
INVESTIGATION OF PHOTOTHERMAL CHARACTERISTICS OF Fe3O4 NANOFLUID
4th Thermal and Fluids Engineering Conference, Vol.24, 2019, issue
Jeonggyun Ham, Tsogtbilegt Boldoo, Honghyun Cho
Experimental Investigation on the Thermal Performance of a Pulsating Heat Pipe by using TiO2 with Dowtherm A Nanofluids
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019), Vol.0, 2019, issue
Rudresha S, Babu E R
Effect of inlet temperature and heat flux on the performance of minichannel using various hybrid nanofluids: Experimental Study
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019), Vol.0, 2019, issue
Jahar Sarkar, Vivek Kumar