Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018024625
pages 1531-1538


Daniel Kane
Tufts University, 200 College Ave., Medford, MA 02138
Marc Hodes
Tufts University, 200 College Ave., Medford, MA 02138


We analytically consider steady, fully-developed, laminar thermal transport between isoflux, parallel plates. Hydrodynamic slip length, thermal slip length, and heat flux are prescribed at each plate. A combined Poiseuille and Couette flow is driven by an imposed pressure gradient and a moving plate. A Nusselt number expression is presented as a function of dimensionless forms of the aforementioned flow and thermal parameters. The limiting cases of Poiseuille flow with and without slip and Couette flow without slip agree with existing expressions. The expressions for combined Poiseuille and Couette flow with and without slip and Couette flow with slip are new.


  1. Colin, S., Gas Microflows in the Slip Flow Regime: a Critical Review on Convective Heat Transfer, J. Heat Transf, vol. 134, p. 020908,2012.

  2. Davis, A.M.J. and Lauga, E., Hydrodynamic Friction of Fakir-Like Superhydrophobic Surfaces, J. Fluid Mech., vol. 661, pp. 402-411,2010.

  3. Enright, R., Hodes, M., Salamon, T., andMuzychka, Y., IsofluxNusselt Number and Slip Length Formulae for Superhydrophobic Microchannels, J. Heat Transf, vol. 136, pp. 1-9,2014.

  4. Hodes, M., Kirk, T., Karamanis, G., and MacLachlan, S., Effect of Thermocapillary Stress on Slip Length for a Channel Textured with Parallel Ridges, J. Fluid Mech., vol. 814, pp. 301-324,2017.

  5. Jiji, L.M., Heat Convection, New York: Springer, 2009.

  6. Kays, W.M. and Crawford, M.E., Convective Heat and Mass Transfer, New York: McGraw-Hill Education, 1993.

  7. Kennard, E.H., Kinetic Theory of Gases, New York: McGraw-Hill, 1938.

  8. Kirk, T.L., Hodes, M., and Papageorgiou, D.T., Nusselt Numbers for Poiseuille Flow over Isoflux Parallel Ridges Accounting for Meniscus Curvature, J. Fluid Mech, vol. 811, pp. 315-349,2017.

  9. Lam, L.S., Melnick, C., Hodes, M., Ziskind, G., and Enright, R., Nusselt Numbers for Thermally Developing Couette Flow with Hydrodynamic and Thermal Slip, J. Heat Transf., vol. 136, no. 5,2014.

  10. Lauga, E. and Stone, H.A., Effective Slip in Pressure-Driven Stokes Flow, J. Fluid Mech., vol. 489, pp. 55-77,2003.

  11. Maxwell, J.C., The Scientific Papers of James Clerk Maxwell, Cambridge, U.K.: Cambridge University Press, 1890.

  12. Navier, C.L., Memoire sur les Lois du Movement des Fluids, Memoires de l 'Academie Royale des Sciences de l 'Institut de France, vol. 6, pp. 389-440,1823.

  13. Nield, D., Forced Convection in a Parallel Plate Channel with Asymmetric Heating, Int. J. Heat Mass Transf., vol. 47, pp. 5609-5612,2004.

  14. Nield, D., Erratum to Forced Convection in a Parallel Plate Channel with Asymmetric Heating, Int. J. Heat Mass Transf., vol. 51, p. 2108,2008.

  15. Philip, J.R., Flows Satisfying Mixed No-Slip and No-Shear Conditions, J. Appl. Math. Phys., vol. 23, pp. 353-372,1972a.

  16. Philip, J.R., Integral Properties of Flows Satisfying Mixed No-Slip and No-Shear Conditions, J. Appl. Math. Phys, vol. 23, pp. 960-968,1972b.

  17. Shah, R.K. and London, A.L., Laminar Flow Forced Convection in Ducts, Cambridge, MA: Academic Press, 1978.

  18. Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P., and Bocquet, L., Achieving Large Slip with Superhydrophobic Surfaces: Scaling Laws for Generic Geometries, Phys. Fluids, vol. 19, p. 3601,2007.

Articles with similar content:

Fully Developed Temperature Distribution in a Porous Saturated Duct of Elliptical Cross Section with Viscous Dissipation Effects and Entropy Generation Analysis
Heat Transfer Research, Vol.36, 2005, issue 3
Kamel Hooman
Analytical Solution of Natural Convection Flow in Vertical Concentric Annuli with Internal Heat Generation/Absorption
International Journal of Fluid Mechanics Research, Vol.39, 2012, issue 5
Abiodun O. Ajibade, Basant K. Jha
Combined Convection-Radiation Interaction Along a Vertical Flat Plate in a Porous Medium
International Journal of Fluid Mechanics Research, Vol.32, 2005, issue 2
Harmindar S. Takhar, Ali J. Chamkha, Rama Subba Reddy Gorla
Special Topics & Reviews in Porous Media: An International Journal, Vol.3, 2012, issue 3
Sunil Datta, Vineet Kumar Verma
On a Closed-Form Solution of Prandtl's System of Equations
International Journal of Fluid Mechanics Research, Vol.40, 2013, issue 2
J. Venetis , Emilio Sideridis