Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v32.i1-3.140
9 pages

Experimental and Computational Investigations of Heat Transfer and Stability of Boiling Liquid Metal in a Model of an Array of the Fast-Neutron Reactor Fuel Elements

A. D. Efanov
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, 1 Bondarenko Sq., 249033, Obninsk, Russia
E. F. Ivanov
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, Obninsk, Russia
V. P. Kolesnik
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, Obninsk, Russia
O. A. Korkhov
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, Obninsk, Russia
V. L. Mal'kov
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, Obninsk, Russia
D. E. Martsinyuk
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, Obninsk, Russia
K. S. Rymkevich
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, Obninsk, Russia
A. P. Sorokin
State Scientific Center of the Russian Federation - Physical and Power Engineering Institute, Obninsk, Russia
Galina Pavlovna Bogoslovskaya
SSC RF "Institute of Physics and Power Engineering" Bondarenko sq. 1, Obninsk, Kaluga Region, 249033, Russia

RÉSUMÉ

The paper presents and analyzes experimental and calculated data on the boiling of a sodium-potassium heat carrier in an array of simulators of fuel elements in a loop with natural circulation which models the conditions of operation of a fast reactor in the regime of accidental cooling. At different mass flow rates of a heat carrier, three regimes of boiling were obtained: a stable (bubble) regime at the initial stage of boiling, then a pulsing (slug) regime which, on increase in the power supply, passed into the second stable (mist) regime of boiling.


Articles with similar content:

CFD ANALYSIS OF NUCLEAR REACTOR THERMAL-HYDRAULICS WITH EXPERIMENTAL VALIDATION OF REACTOR VESSEL HEAD COOL-DOWN UNDER NATURAL CIRCULATION CONDITIONS
International Heat Transfer Conference 13, Vol.0, 2006, issue
M. Blaha, Miroslav Jicha, Jaroslav Katolicky, Jan Frelich
THE DISPERSION OF FIRE SUPPRESSION AGENTS DISCHARGED FROM HIGH PRESSURE VESSELS : ESTABLISHING INITIAL/BOUNDARY CONDITIONS FOR THE FLOW OUTSIDE THE VESSEL
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
L. Cooper
Study of Critical Choking of the Flow with Discharge of Boiling-up Liquid in Short Channels
Heat Transfer Research, Vol.38, 2007, issue 7
G. K. Ivanitskii
CORE THERMAL RESPONSE AND MASS DISTRIBUTION DURING VESSEL MASS DEPLETION ASSOCIATED WITH A SBLOCA
International Heat Transfer Conference 8, Vol.5, 1986, issue
G. G. Loomis
Controlling the Overgrowing of Water Supply Lines with Zebra Mussels (Dreissena polymorpha Pall., D. bugensis Andr.)
Hydrobiological Journal, Vol.34, 1998, issue 4-5
L. V. Shevtsova