Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018025939
pages 581-603

SIMULTANEOUS SOLUTIONS FOR MHD FLOW OF WILLIAMSON FLUID OVER A CURVED SHEET WITH NONUNIFORM HEAT SOURCE/SINK

Kempannagari Anantha Kumar
Department of Mathematics, Sri Venkateswara University, Tirupati-517 502, India
J. V. Ramana Reddy
Department of Mathematics, Sri Venkateswara University, Tirupati-517502, India; Department of Science and Humanities, Krishna Chaitanya Institute of Technology and Sciences, Markapur, India
Vangala Sugunamma
Department of Mathematics, Sri Venkateswara University, Tirupati-517502, India
N. Sandeep
Department of Mathematics, Central University of Karnataka, Kalaburagi-585 367, India

RÉSUMÉ

Heat and mass transfer effects on both time-dependent and time-independent MHD flow of Williamson fluid due to a curved surface are discussed. This analysis is carried out subject to thermal radiation and chemical reaction. The solutal and convective boundary conditions are considered. To seek the solution of the problem, a system of proper transmutations is appraised to convert the flow equations into ODE. The solution of the transformed equations is attained by the consecutive application of the Fehlberg and shooting techniques. Graphs are plotted to emphasize the impact of sundry physical parameters on flow fields. Further, we evaluated the friction factor, as well as heat and mass transport rates. It is noted that the curvature parameter enhances the velocity field while the reverse trend is detected due to the Williamson fluid and magnetic field parameters. Also, it is worth mentioning that the temperature profiles of steady flow are fruitfully affected when compared to the unsteady flow for all the parameters involved in the flow.


Articles with similar content:

NUMERICAL EXAMINATION OF MHD NONLINEAR RADIATIVE SLIP MOTION OF NON-NEWTONIAN FLUID ACROSS A STRETCHING SHEET IN THE PRESENCE OF A POROUS MEDIUM
Heat Transfer Research, Vol.50, 2019, issue 12
J. V. Ramana Reddy, V. Sugunamma, N. Sandeep, Kempannagari Anantha Kumar
THERMOPHORESIS AND HEAT GENERATION/ABSORPTION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW OF JEFFREY FLUID OVER POROUS OSCILLATORY STRETCHING SURFACE WITH CONVECTIVE BOUNDARY CONDITIONS
Journal of Porous Media, Vol.21, 2018, issue 6
Nasir Ali, Sami Ullah Khan
NUMERICAL SIMULATION FOR BIVISCOSITY FLUID FLOW THROUGH A POROUS MEDIUM UNDER THE EFFECTS OF VARIABLE PROPERTIES
Special Topics & Reviews in Porous Media: An International Journal, Vol.3, 2012, issue 1
Nasser S. Elgazery
HALL EFFECTS ON MHD SQUEEZING FLOW OF A WATER-BASED NANOFLUID BETWEEN TWO PARALLEL DISKS
Journal of Porous Media, Vol.22, 2019, issue 2
M. Veera Krishna, Ali J. Chamkha
EFFECTS OF HEAT GENERATION, THERMAL RADIATION, AND HALL CURRENT ON MHD CASSON FLUID FLOW PAST AN OSCILLATING PLATE IN POROUS MEDIUM
Multiphase Science and Technology, Vol.31, 2019, issue 1
Harshad R. Patel