Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 1.199 Facteur d'impact sur 5 ans: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006516
pages 507-539

NANOFLUID FLOW HEAT TRANSFER PERFORMANCE IN A SQUARE ENCLOSURE WITH DIFFERENT VENTING LOCATIONS

Mohammad Najafi
Department of Mechanical and Aerospace Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
Mahdi Aboujafari
Department of Mechanical and Aerospace Engineering, Islamic Azad University, Tehran Science and Research Branch, Tehran, Iran
Koroush Javaherdeh
Department of Mechanical Engineering, Guilan University, Rasht, Iran

RÉSUMÉ

This study considers mixed convection heat transfer performance of a laminar nanofluid flow through a vented two-dimensional square enclosure. The study compares the heat transfer characteristics of the nanofluid in the square enclosure for different locations of the inlet and outlet ports. The enclosure comprises two different constant-temperature top and bottom walls, with the bottom wall being at a differentially higher temperature than its counterpart, and two thermally insulated side walls. The working nanofluid considered is Cu−water with various volume fractions of its solids. The finite volume method together with the SIMPLE algorithm for a uniformly staggered grid is employed as a numerical method. In addition to varying the inlet and outlet vents locations, the Reynolds number, Richardson number, and the nanofluid volume fraction are considered as varying parameters in observing the nanofluid flow and heat transfer throughout the enclosure. To verify the accuracy of the developed computer code utilized, the results of three test cases considered in this work are compared with those of other investigators. The results of the present study show that, although locating both the inlet and outlet ports on the bottom of the two side walls show the highest rate of heat transfer from the bottom hot wall, for high Richardson numbers, locating the inlet on the bottom and the outlet on the top of the opposite side walls gives comparable heat transfer results. Therefore, in cases where the design constraints may not allow placing both the inlet and outlet ports on the bottom, locating the inlet on the bottom and the outlet on the top of the side walls is the best option to secure the highest heat transfer rate from the bottom hot wall.


Articles with similar content:

HEAT TRANSFER ENHANCEMENT OF UNIFORMLY/LINEARLY HEATED SIDE WALL IN A SQUARE ENCLOSURE UTILIZING ALUMINA−WATER NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 3
Senthil Kumar Arumugam, Sathiyamoorthy Murugesan, Ali J. Chamkha, Saritha Natesan
Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall
Heat Transfer Research, Vol.42, 2011, issue 3
Saeid Jani, Mostafa Mahmoodi, Meysam Amini
PREDICTION OF WALL TEMPERATURE DISTRIBUTIONS IN LONG LINES UNDERGOING NATURAL CONVECTION AT HIGH RAYLEIGH NUMBERS
International Heat Transfer Conference 10, Vol.14, 1994, issue
B. T. Lubin, J. H. Kim
NUMERICAL INVESTIGATION OF FORCED CONVECTION THERMAL MANAGEMENT OF HIGH POWER ELECTRONICS ON A ROTARY PLATFORM
First Thermal and Fluids Engineering Summer Conference, Vol.8, 2015, issue
Ilker Tari, Anil Caliskan
Numerical Investigation of Flow and Heat Transfer of a Liquid Metal in a Compact Heat Exchanger
Heat Transfer Research, Vol.35, 2004, issue 3&4
Kamel Hooman, A. A. Ranjbar-Kani