Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016010434
pages 855-863

OBSERVATION OF HEAT TRANSFER IN OSCILLATING FLOW WITHIN A CIRCULAR CHANNEL

Ke Tang
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Jiale Huang
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Wentao Tang
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Juan Yu
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Tao Jin
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China

RÉSUMÉ

A periodical reversion of velocity direction distinguishes an oscillating flow from a common unidirectional steady flow. This study focuses on heat transfer in oscillating flow within a circular channel. An experimental apparatus operating at a frequency of 0.3-1.1 Hz and at a near atmospheric pressure has been built for measuring the heat transfer rate. Typical experimental data on the oscillating pressure, velocity, temperature difference (between the central fluid and the channel wall), on the heat flux at the channel wall are presented. A zero-order Nusselt number is used to characterize the time-averaged heat transfer of the oscillating flow. A marked increase in the zero-order Nusselt number with increase in the Peclet number is observed, which indicates that the raised frequency can effectively enhance heat transfer in oscillating flow.


Articles with similar content:

Change in flow regime in a natural convection flow in an open-ended vertical channel
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Hervé Pabiou, Christophe Daverat , Christophe Menezo, Hassan Bouia, Shihe Xin
UNSTEADY HEAT TRANSFER AND DIRECT COMPARISON TO STEADY-STATE MEASUREMENTS IN A ROTOR-WAKE EXPERIMENT
International Heat Transfer Conference 8, Vol.3, 1986, issue
J.E. LaGraff, James E. O'Brien, Robert J. Simoneau, Kim A. Morehouse
VISUALISATION OF FLOW PATTERNS IN FLAT PLATE PULSATING HEAT PIPE: INFLUENCE OF HYDRAULIC BEHAVIOUR ON THERMAL PERFORMANCES
Heat Pipe Science and Technology, An International Journal, Vol.5, 2014, issue 1-4
Cyril Romestant, Yves Bertin, V. Manno, Vincent Ayel, Sauro Filippeschi
FORCED FLOW FILM BOILING FROM A CYLINDER IN THE CRITICAL REGION
International Heat Transfer Conference 7, Vol.9, 1982, issue
E. G. Hauptmann
MECHANISM OF DISSIMILAR MOMENTUM AND HEAT TRANSFER INDUCED BY A TRAVELING WAVE-LIKE BLOWING/SUCTION IN TURBULENT CHANNEL FLOW
TSFP DIGITAL LIBRARY ONLINE, Vol.7, 2011, issue
Nobuhide Kasagi, Yosuke Hasegawa