Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v34.i3-4.50
14 pages

Heat and Mass Transfer in Evaporative Cooling of Water Films on Two Vertical Plates

V. V. Antonik
"Belenergo" Belorussian State Power Engineering Concern, Minsk, Belarus
Alexey I. Petruchik
A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk, Belarus
A. D. Solodukhin
A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
N. N. Stolovich
A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
Sergey P. Fisenko
A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk, Belarus

RÉSUMÉ

A mathematical model of evaporative cooling of water films on vertical plates is developed. The model is a boundary-value problem for a system of four ordinary nonlinear differential equations. Using the model, we performed calculations and compared them with the data obtained on a commercial cooling tower. It is established that at small and average densities of irrigation the model allows one to adequately describe the parameters of vapor–air mixture above the plates and the temperature of the water cooled. The comparison of experimental and calculated data also shows that at a nominal hydraulic load the contribution of film currents is not less than 50% in a cooling tower.