Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v42.i1.30
pages 3-23

Turbine Airfoil Leading-Edge Stagnation Aerodynamics and Heat Transfer − A Review

Lee S. Langston
Department of Mechanical Engineering, University of Connecticut, USA
Brian M. Holley
United Technologies Research Center 411 Silver Lane, M/S 129-89 East Hartford, CT 06108, USA

RÉSUMÉ

The focus of this paper is on the fluid mechanics and heat transfer at the stagnation flow region at the leading edge of a turbine cascade airfoil. The fluid mechanics analysis presented is based on the exact solution to the Navier-Stokes equation of Hiemenz for a plane stagnating laminar flow. The heat transfer analysis is based on Hiemenz flow and a stagnation point potential flow, which predict a lower and an upper bound for stagnation region Stanton numbers. Comparisons of data from selected studies of skin friction and surface pressure show that the Hiemenz solution correlates well with the results from a number of stagnation flow experiments. The stagnation point heat transfer from four turbine cascade studies were found to be bounded by an upper limit on the Stanton number predicted by stagnation point potential flow and a lower limit by Hiemenz flow. These upper and lower limits should provide a useful heat transfer tool for the turbine designer.


Articles with similar content:

TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Brian M. Holley, Lee S. Langston
TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Brian M. Holley, Lee S. Langston
Quantitative measurement of spatio-temporal heat transfer to a turbulent water pipe flow
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Shunsuke Yamada, Naoki Shiibara, Hajime Nakamura
NUMERICAL SIMULATION OF THE ENDWALL HEAT TRANSFER IN THE LANGSTON CASCADE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Alexander M. Levchenya, Dmitry K. Zaytsev, Evgueni M. Smirnov
AUGMENTATION OF CONVECTIVE HEAT TRANSFER FROM HIGH-POROSITY PERFORATED SURFACES
International Heat Transfer Conference 6, Vol.2, 1978, issue
Wen-Jei Yang, C.P. Lee