Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 1.199 Facteur d'impact sur 5 ans: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019026621
pages 609-621


Alejandro Zacarias
Instituto Politécnico Nacional, ESIME Azcapotzalco, Av. de las Granjas 682, Col. Santa Catarina, 02250, Ciudad de México, México
J. A. Quiroz
Instituto Politécnico Nacional, ESIME Azcapotzalco, Av. de las Granjas 682, Col. Santa Catarina, 02250, Ciudad de México, México
Geydy Luz Gutiérrez-Urueta
Departamento de Ingenieria Mecánica-Eléctrica, Universidad Autónoma de San Luis Potosi, Dr. Manuel Nava No. 8, Zona Universitaria Poniente, 78290, San Luis Potosi, México
M. Venegas
Unidad Asociada de Ingenieria Termicay de Fluidos CSIC-UC3M; Departamento de Ingenieria Termicay de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganes, Madrid, Spain
Ignacio Carvajal
Instituto Politécnico Nacional, ESIME, UPALM, Ciudad de México 07738, México
J. Rubio
Instituto Politécnico Nacional, ESIME Azcapotzalco, Av. de las Granjas 682, Col. Santa Catarina, 02250, Ciudad de México, México


This work deals with the comparison of the performance of a single-effect absorption chiller using two main configurations: equipped with a nonadiabatic absorber or an adiabatic one. Simulations were developed based on thermodynamic balances, operating with ammonia-lithium nitrate (NH3−LiNO3) and water-lithium bromide (H2O−LiBr) as working pairs. Parameters of evaluation are the coefficient of performance COP, circulation ratio f, and driving heat rate Qg. Results illustrate that the nonadiabatic absorption system presents better performance parameters for a given operating point, attributable to a higher concentration change in the absorber for a fixed cooling capacity. When the generator temperature Tg is varied, a strong influence on the performance parameters f, Qg, and COP is observed. However, from a certain value of Tg its variation has a less influence on the performance. When the condenser temperature increases, the COP decreases. The contrary happens if the evaporation temperature is increased. This is valid for both adiabatic and nonadiabatic cases.


  1. Ayala, R., Frias, J.L., Lam, L., Heard, C.L., and Holland, FA., Experimental Assessment of an Ammonia/Lithium Nitrate Absorption Cooler Operated on Low Temperature Geothermal Energy, Heat Recovery Syst. CHP, vol. 14, p. 437, 1994.

  2. Balaji, D., Velraj, R., and Ramana Murthy, M.V., A Review of the Role of Passive Techniques on Heat Transfer Enhancement of Horizontal Tube Falling Film and Flooded Evaporators, J. Enhanced Heat Transf., vol. 25, pp. 239-282, 2018.

  3. Berdasco, M., Valles, M., and Coronas, A., Thermodynamic Analysis of an Ammonia/Water Absorption-Resorption Refrigeration System, Int. J. Refrig., vol. 103, pp. 51-60, 2019.

  4. Best, R., Porras, L., and Holland, F.A., Thermodynamic Design Data for Absorption Heat Pump Systems Operating on Ammonia-Lithium Nitrate-Part One. Cooling, Heat Recovery Syst. CHP, vol. 11, pp. 49-61, 1991.

  5. Boman, D., Hoysall, D., Staedter, M., Goyal, A., Ponkala, M., and Garimella, S., A Method for Comparison of Absorption Heat Pump Working Pairs, Int. J. Refrig., vol. 77, pp. 149-175, 2017.

  6. Chan, K.W. and McCulloch, M., Experimental Investigation of the Bubble Pump of a Single Pressure Absorption Refrigeration System under the Effect of Pressure and Ammonia Concentration, Heat Transf. Res., vol. 47, pp. 767-780, 2016.

  7. Dominguez-Inzunza, L.A., Hernandez-Magallanes, J.A., Sandoval-Reyes, M., and Rivera, W., Comparison of the Performance of Single-Effect, Half-Effect, Double-Effect in Series and Inverse and Triple-Effect Absorption Cooling Systems Operating with the Ammonia-Lithium Nitrate Mixture, Appl. Therm. Eng., vol. 66, pp. 612-620, 2014.

  8. Du, S. and Wang, R.Z., A Unified Single-Stage Ammonia-Water Absorption System Configuration with Producing Best Thermal Efficiencies for Freezing, Air-Conditioning and Space Heating Applications, Energy, vol. 174, pp. 1039-1048, 2019.

  9. Garimella, S., Determan, M.D., Meacham, J.M., Lee, S., and Ernst, T.C., Microchannel Component Technology for System-Wide Application in Ammonia/Water Absorption Heat Pumps, Int. J. Refrig., vol. 34, pp. 1184-1196, 2011.

  10. Gutierrez-Urueta, G., Huicochea, A., Rivera, W., Rodriguez Aumente, P., and Oviedo, F., Experimental Energy and Exergy Analysis of a Novel Water-LiBr Absorption System, Int. J. Exergy, vol. 23, pp. 31-46, 2017.

  11. Gutierrez-Urueta, G., Huicochea, A., Rodriguez-Aumente, P., and Rivera, W., Energy and Exergy Analysis of an Adiabatic Water-LiBr Absorption System, J. Renew. Sustain. Energy, vol. 6, 033101, 2014. DOI: 10.1063/1.4872358.

  12. Gutierrez-Urueta, G., Rodriguez, P., Venegas, M., Ziegler, F., and Rodriguez-Hidalgo, M.C., Experimental Performances of a LiBr-Water Absorption Facility Equipped with Adiabatic Absorber, Int. J. Refrig., vol. 34, pp. 1749-1759, 2011.

  13. Hernandez-Magallanes, J.A., Dominguez-Inzunza, L.A., Gutierrez-Urueta, G., Soto, P., Jimenez, C., and Rivera, W., Experimental Assessment of an Absorption Cooling System Operating with the Ammonia/Lithium Nitrate Mixture, Energy, vol. 78, pp. 685-692, 2014.

  14. Herold, K.E., Radermacher, R., and Klein, S.A., Absorption Chillers and Heat Pumps, Boca Raton, FL: CRC Press Inc., 1996.

  15. Karamangil, M.I., Coskun, S., Kaynakli, O., and Yamankaradeniz, N., A Simulation Study of Performance Evaluation of Single-Stage Absorption Refrigeration System Using Conventional Working Fluids and Alternatives, Renew. Sustain. Energy Rev., vol. 14, pp. 1969-1978, 2010.

  16. Klein, S.A., Engineering Equation Solver, 1992-2017, 2018.

  17. Kurem, E. and Horuz, I., A Comparison between Ammonia-Water and Water-Lithium Bromide Solutions in Absorption Heat Transformers, Int. Commun. Heat Mass Transf., vol. 28, no. 3, pp. 427-438, 2001.

  18. Li, J., Xie, X., and Yi, J., Experimental Study and Correlation on the Falling Column Adiabatic Absorption of Water Vapor into LiBr-H2O Solution, Int. J. Refrig., vol. 51, pp. 112-119, 2015.

  19. Libotean, S., Martin, A., Salavera, D., Valles, M., Esteve, X., and Coronas, A., Densities, Viscosities and Heat Capacities of Ammonia + Lithium Nitrate and Ammonia + Lithium Nitrate + Water Solutions between (293.15 and 353.15) K, J. Chem. Eng. Data, vol. 53, pp. 2383-2388, 2008.

  20. Libotean, S., Salavera, D., Valles, M., Esteve, X., and Coronas, A., Vapor-Liquid Equilibrium of Ammonia + Lithium Nitrate + Water and Ammonia + Lithium Nitrate Solutions from 293.15 to 353.15 K, J. Chem. Eng. Data, vol. 52, pp. 1055-1055, 2007.

  21. Lima, A.A.S., Ochoa, A.A.V., Da Costa, J.A.P., Dos Santos, C.A.C., Lima, M.V.F., and De Menezes, F.D., Energetic Analysis of an Absorption Chiller Using NH3/LiNO3 as an Alternative Working Fluid, Braz. J. Chem. Eng., vol. 36, no 2, pp. 1061-1073, 2019.

  22. Llamas-Guillen, S.U., Cuevas, R., Best, R., and Gomez, V.H., Experimental Results of a Direct Air-Cooled Ammonia-Lithium Nitrate Absorption Refrigeration System, Appl. Therm. Eng., vol. 67, pp. 362-369, 2014.

  23. Nakoryakov, V.Y., Grigoriyeva, N.I., Lezhnin, S.I., and Potaturkina, L.V., Combined Heat and Mass Transfer in Film Absorption and Bubble Desorptio, Heat Transf. Res., vol. 29, pp. 333-338, 1998.

  24. Paniev, G.A., Absorption Heat and Mass Transfer on Droplets in a Polydispersed Spray, Heat Transf.-Soviet Res., vol. 15, pp. 62-72, 1983.

  25. Rivera, C.O. and Rivera, W., Modeling of an Intermittent Solar Absorption Refrigeration System Operating with Ammonia-Lithium Nitrate Mixture, Sol. Energy Mater. Sol. Cells, vol. 76, pp. 417-427, 2003.

  26. Rivera, W., Moreno-Quintanar, G., Rivera, C.O., Best, R., and Martinez, F., Evaluation of a Solar Intermittent Refrigeration System for Ice Production Operating with Ammonia/Lithium Nitrate, Sol. Energy, vol. 85, pp. 38-45, 2011.

  27. Ryan, W.A., Water Absorption in an Adiabatic Spray of Aqueous Lithium Bromide Solution. Proc. of Int. Absorption Heat Pump Conf., vol. 31, pp. 155-162, 1993.

  28. Su, F., Deng, Y., and Ma, H., Adiabatic Spray Absorption Process in an Aqueous Ammonia Solution, Heat Transf. Res., vol. 44, pp. 733-743, 2013.

  29. Summerer, F., Ziegler, F., Riesch, P., and Alefeld, G., Hydroxide Absorption Heat Pumps with Spray Absorber, ASHRAE Tech. Data Bull., vol. 12, pp. 50-57, 1996.

  30. Sun, D.W., Comparison of the Performances of NH3-H2O, NH3-LiNO3, and NH3-NaSCN Absorption Refrigeration Systems, Energy Convers. Manage., vol. 39, pp. 357-368, 1998.

  31. Venegas, M., Rodriguez, P., Lecuona, A., and Izquierdo, M., Spray Absorbers in Absorption Systems Using Lithium Nitrate- Ammonia Solution, Int. J. Refrig., vol. 28, pp. 554-564, 2005.

  32. Ventas, R., Lecuona, A., Legrand, M., and Rodriguez-Hidalgo, M.C., On the Recirculation of Ammonia-Lithium Nitrate in Adiabatic Absorbers for Chillers, Appl. Therm. Eng., vol. 30, pp. 2770-2777, 2010.

  33. Wang, L., Chen, G.M., Wang, Q., and Zhong, M., Thermodynamic Performance Analysis of Gas-Fired Air-Cooled Adiabatic Absorption Refrigeration Systems, Appl. Therm. Eng., vol. 27, pp. 1642-1652, 2007.

  34. Warnakulasuriya, F.S.K. and Worek, W.M., Abiabatic Water Absorption Properties of an Aqueous Absorbent at Very Low Pressures in a Spray Absorber, Int. J. Heat Mass Transf., vol. 49, pp. 1592-1602, 2006.

  35. Wu, W., Wang, B., Shi, W., and Li, X., Absorption Heating Technologies: A Review and Perspective, Appl. Energy, vol. 130, pp. 51-71, 2014.

  36. Yang, S., Deng, C., and Liu, Z., Optimal Design and Analysis of a Cascade LiBr/H2O Absorption Refrigeration/Transcritical CO2 Process for Low-Grade Waste Heat Recovery, Energy Convers. Manage., vol. 192, pp. 232-242, 2019.

  37. Zacarias, A., Venegas, M., Lecuona, A., and Ventas, R., Experimental Evaluation of Ammonia Adiabatic Absorption into Ammonia Lithium Nitrate Solution Using a Fog Jet Nozzle, Appl. Therm. Eng., vol. 31, pp. 781-790, 2013.

  38. Zacarias, A., Venegas, M., Lecuona, A., Ventas, R., and Carvajal, I., Experimental Assessment of Vapor Adiabatic Absorption into Solution Droplets Using a Full Cone Nozzle, Exp. Therm. Fluid Sci., vol. 68, pp. 228-238, 2015.

  39. Zacarias, A., Venegas, M., Ventas, R., and Lecuona, A., Experimental Assessment of Ammonia Adiabatic Absorption into Ammonia-Lithium Nitrate Solution Using a Flat Fan Nozzle, Appl. Therm. Eng., vol. 31, no. 16, pp. 3569-3579, 2011.

  40. Zamora, M., Bourouis, M., Coronas, A., and Valles, M., Part-Load Characteristics of a New Ammonia/Lithium Nitrate Absorption Chiller, Int. J. Refrig., vol. 56, pp. 43-51, 2015.

  41. Zamora, M., Bourouis, M., Coronas, A., and Valles, M., Pre-Industrial Development and Experimental Characterization of New Air-Cooled and Water-Cooled Ammonia/Lithium Nitrate Absorption Chillers, Int. J. Refrig., vol. 45, pp. 189-197, 2014.

Articles with similar content:

Second Thermal and Fluids Engineering Conference, Vol.14, 2017, issue
Sunday O. Oyedepo, D. S. Adelekan, Taiwo O. Babarinde, O. S. Ohunakin, R. O. Leramo
Second Thermal and Fluids Engineering Conference, Vol.14, 2017, issue
Todd M. Bandhauer, Achyut Paudel
International Heat Transfer Conference 16, Vol.9, 2018, issue
Chaoqun Ma, Zhigang Dang, Ming Gao, Yuetao Shi, Yang Zhou
International Heat Transfer Conference 10, Vol.26, 1994, issue
Richard E. Putman
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.27, 2018, issue
Geydy Luz Gutiérrez-Urueta, J. A. Quiroz, Alejandro Zacarias, Ignacio Carvajal