Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Therapeutic Drug Carrier Systems
Facteur d'impact: 2.9 Facteur d'impact sur 5 ans: 3.72 SJR: 0.573 SNIP: 0.551 CiteScore™: 2.43

ISSN Imprimer: 0743-4863
ISSN En ligne: 2162-660X

Volumes:
Volume 36, 2019 Volume 35, 2018 Volume 34, 2017 Volume 33, 2016 Volume 32, 2015 Volume 31, 2014 Volume 30, 2013 Volume 29, 2012 Volume 28, 2011 Volume 27, 2010 Volume 26, 2009 Volume 25, 2008 Volume 24, 2007 Volume 23, 2006 Volume 22, 2005 Volume 21, 2004 Volume 20, 2003 Volume 19, 2002 Volume 18, 2001 Volume 17, 2000 Volume 16, 1999 Volume 15, 1998 Volume 14, 1997 Volume 13, 1996 Volume 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2015012403
pages 503-533

Nanostructured Delivery Systems: Augmenting the Delivery of Antiretroviral Drugs for Better Management of HIV/AIDS

Gurinder Singh
Department of Pharmaceutics, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Bangalore 560027, Karnataka, India
Roopa S Pai
Department of Pharmaceutics, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Bangalore 560027, Karnataka, India
Sanaul Mustafa
Department of Pharmaceutics, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Bangalore 560027, Karnataka, India

RÉSUMÉ

In the last two decades, HIV-1, the retrovirus associated with acquired immunodeficiency syndrome (AIDS), is globally one of the primary causes of morbidity and mortality. Unfortunately, existing approaches for interventions are not able to suppress the progression of infection due to this virus. Of the many obstacles, viral entry into the mono-nuclear phagocyte system encompassing monocytes/macrophages and dendritic cells is a major concern. Viral infection is also responsible for the subsequent distribution of the virus into various tissues throughout the organism. Tremendous progress has been made during the past few years to diagnose and treat patients with HIV/AIDS infection, yet much remains to be done. Recommended treatment involves long-term and multiple drug therapy that causes severe side effects. With almost 12% of the world population suffering from HIV/AIDS, better management of this global threat is highly desired. Nanostructured delivery systems hold promise for improving the situation. Such systems can facilitate the uptake of antiretroviral drugs, causing a considerable improvement in HIV/AIDS therapy. Nanoscale systems have intriguing potential to drastically improve existing HIV/AIDS diagnosis and treatment platforms. Nanosystems constitute a wide range of systems varying from polymeric nanoparticles, to solid-lipid nanoparticles, liposomes, micro- and nanoemulsions, dendrimers, and self-nanoemulsifying systems. Improved bioavailability, solubility, stability, and biocompatibility make them an ideal choice for delivery of antiretroviral drugs. The present review initially describes an updated bird's-eye view account of the literature. Then, we provide a relatively sententious overview on updated patents of recent nanostructured delivery systems for antiretroviral drugs. Finally, we discuss low-cost therapy (such as antioxidants and immune modulators) for the treatment and prevention of HIV/AIDS.


Articles with similar content:

Lipid Nanoparticles for Nasal/Intranasal Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 3
S. Cunha, M. H. Amaral, J. M. Sousa Lobo, Ana C. Silva
Newer Therapeutic Vistas for Antiglaucoma Medicines
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.28, 2011, issue 2
Shilpa Kakkar, Indu Pal Kaur, Harinder Singh
Recent Developments in the Use of Bioadhesive Systems for Delivery of Drugs to the Oral Cavity
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.21, 2004, issue 4
John D. Smart
Advanced Aerosol Delivery Devices for Potential Cure of Acute and Chronic Diseases
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 6
Goutam Rath, Ranjot Kaur, Tarun Garg, Amit Kumar Goyal
Lessons Learned from Gemcitabine: Impact of Therapeutic Carrier Systems and Gemcitabine’s Drug Conjugates on Cancer Therapy
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 1
Sathish Dyawanapelly, Animesh Kumar, Manish K. Chourasia