Abonnement à la biblothèque: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Publication de 6  numéros par an

ISSN Imprimer: 0743-4863

ISSN En ligne: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

The Role of Immunoproteins in the Survival

Volume 14, Numéro 2, 1997, 27 pages
DOI: 10.1615/CritRevTherDrugCarrierSyst.v14.i2.10
Get accessGet access

RÉSUMÉ

The clearance of liposomes from the circulation is mediated largely by the cells of the reticuloendothelial system. These cells recognize liposome-bound immunoproteins, particularly immunoglobulins and complement. This review addresses the state of knowledge of the plasma proteins that can initiate complement activation and antibody binding and the known interactions among these proteins and liposomes. Evidence for the involvement of immunoproteins and other molecules in the in vivo survival of liposomes is also reviewed.

CITÉ PAR
  1. Klapper Yvonne, Hamad Osama A., Teramura Yuji, Leneweit Gero, Nienhaus G. Ulrich, Ricklin Daniel, Lambris John D., Ekdahl Kristina N., Nilsson Bo, Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles, Biomaterials, 35, 11, 2014. Crossref

  2. Jiskoot Wim, van Schie Rianne M. F., Carstens Myrra G., Schellekens Huub, Immunological Risk of Injectable Drug Delivery Systems, Pharmaceutical Research, 26, 6, 2009. Crossref

  3. Ait-Oudhia Sihem, Mager Donald, Straubinger Robert, Application of Pharmacokinetic and Pharmacodynamic Analysis to the Development of Liposomal Formulations for Oncology, Pharmaceutics, 6, 1, 2014. Crossref

  4. Kuznetsova N. R., Vodovozova E. L., Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer, Biochemistry (Moscow), 79, 8, 2014. Crossref

  5. Momekova D., Momekov G., Rangelov S., Storm G., Lambov N., Physicochemical and biopharmaceutical characterization of dipalmitoyl phosphatidylcholine liposomes sterically stabilized by copolymers bearing short blocks of lipid-mimetic units, Soft Matter, 6, 3, 2010. Crossref

  6. Pata Veena, Dan Nily, The Effect of Chain Length on Protein Solubilization in Polymer-Based Vesicles (Polymersomes), Biophysical Journal, 85, 4, 2003. Crossref

  7. Savay Sandor, Szebeni Janos, Baranyi Lajos, Alving Carl R, Potentiation of liposome-induced complement activation by surface-bound albumin, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1559, 1, 2002. Crossref

  8. Takanashi Yoshihiro, Ishida Tatsuhiro, Meguro Toshinari, Kirchmeier Marc J., Allen Theresa M., Zhang John H., Intrathecal application with liposome-entrapped Fasudil for cerebral vasospasm followingsubarachnoid hemorrhage in rats, Journal of Clinical Neuroscience, 8, 6, 2001. Crossref

  9. Nagayasu A, Uchiyama K, Kiwada H, The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs, Advanced Drug Delivery Reviews, 40, 1-2, 1999. Crossref

  10. Sadzuka Yasuyuki, Nakade Akiko, Tsuruda Tomoko, Sonobe Takashi, Study on the characterization of mixed polyethyleneglycol modified liposomes containing doxorubicin, Journal of Controlled Release, 91, 3, 2003. Crossref

  11. Piperoudi Sophia, Fatouros Dimitris, Ioannou Panayiotis V., Frederik Peter, Antimisiaris Sophia G., Incorporation of PEG-lipids in arsonoliposomes results in formation of highly stable arsenic-containing vesicles, Chemistry and Physics of Lipids, 139, 2, 2006. Crossref

  12. Pata V., Dan N., Photos P.J., Discher D.E., Protein adsorption into polymersomes: effect of chain length on circulation time in vivo, 2003 IEEE 29th Annual Proceedings of Bioengineering Conference, 2003. Crossref

  13. Ishida Tatsuhiro, Ichikawa Takako, Ichihara Masako, Sadzuka Yasuyuki, Kiwada Hiroshi, Effect of the physicochemical properties of initially injected liposomes on the clearance of subsequently injected PEGylated liposomes in mice, Journal of Controlled Release, 95, 3, 2004. Crossref

  14. Nagayama Susumu, Ogawara Ken-ichi, Fukuoka Yoshiko, Higaki Kazutaka, Kimura Toshikiro, Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics, International Journal of Pharmaceutics, 342, 1-2, 2007. Crossref

  15. Gomes R.T, Camargos R.P.F, Viotti A.P, Tavares A.P, Revelo M.P, Freitas T.V, Comparison of the biodistribution of free or liposome-entrapped Crotalus durissus terrificus (South American rattlesnake) venom in mice, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 131, 3, 2002. Crossref

  16. Flaig R.M., Rosenkranz V., Wink M., Fricker G., Ktenate nanoparticles (bdellosomes): a novel strategy for delivering drugs to parasites or tumours, Journal of Drug Delivery Science and Technology, 15, 1, 2005. Crossref

  17. Ishida Tatsuhiro, Maeda Ryuhei, Ichihara Masako, Irimura Kenji, Kiwada Hiroshi, Accelerated clearance of PEGylated liposomes in rats after repeated injections, Journal of Controlled Release, 88, 1, 2003. Crossref

  18. Liu Jubo, Zeng Faquan, Allen Christine, Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent, Journal of Controlled Release, 103, 2, 2005. Crossref

  19. Huong Tran Minh, Ishida Tatsuhito, Harashima Hideyoshi, Kiwada Hiroshi, The complement system enhances the clearance of phosphatidylserine (PS)-liposomes in rat and guinea pig, International Journal of Pharmaceutics, 215, 1-2, 2001. Crossref

  20. Devine Dana V, Bradley Amanda J, The complement system in liposome clearance: Can complement deposition be inhibited?, Advanced Drug Delivery Reviews, 32, 1-2, 1998. Crossref

  21. Vermette Patrick, Meagher Laurence, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms, Colloids and Surfaces B: Biointerfaces, 28, 2-3, 2003. Crossref

  22. Moghimi S. Moein, Hamad Islam, Liposome-Mediated Triggering of Complement Cascade, Journal of Liposome Research, 18, 3, 2008. Crossref

  23. Lim Soo Patrick, Liu Jubo, Allen Christine, Lee Helen, Butler Mark, Polymeric Micelles for Formulation of Anti-Cancer Drugs, in Nanotechnology for Cancer Therapy, 2006. Crossref

  24. Szebeni Janos, Moghimi Seyed Moein, Liposome triggering of innate immune responses: A perspective on benefits and adverse reactions, Journal of Liposome Research, 19, 2, 2009. Crossref

  25. Yan Xuedong, Scherphof Gerrit L., Kamps Jan A. A. M., Liposome Opsonization, Journal of Liposome Research, 15, 1-2, 2005. Crossref

  26. Basic Concepts in Drug Targeting, in Bio-Targets and Drug Delivery Approaches, 2016. Crossref

  27. Sugiyama Ikumi, Sadzuka Yasuyuki, The development of PEGylatied liposomes, Drug Delivery System, 31, 4, 2016. Crossref

  28. Bally Marcel B., Ansell Steven M., Tardi Paul G., Harasym Troy O., Liposome Targeting Following Intravenous Administration: Defining Expectations and a Need for Improved Methodology, Journal of Liposome Research, 7, 4, 1997. Crossref

  29. Frézard F., Liposomes: from biophysics to the design of peptide vaccines, Brazilian Journal of Medical and Biological Research, 32, 2, 1999. Crossref

  30. Kuskov Andrey N., Kulikov Pavel P., Goryachaya Anastasia V., Tzatzarakis Manolis N., Tsatsakis Aristidis M., Velonia Kelly, Shtilman Mikhail I., Self-assembled amphiphilic poly-N -vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: Stability aspects, Journal of Applied Polymer Science, 135, 1, 2018. Crossref

  31. Tretiakova D. S., Onishchenko N. R., Vostrova A. G., Vodovozova E. L., Interactions of liposomes carrying lipophilic prodrugs in the bilayer with blood plasma proteins, Russian Journal of Bioorganic Chemistry, 43, 6, 2017. Crossref

  32. Nunes Shirleide Santos, Fernandes Renata Salgado, Cavalcante Carolina Henriques, da Costa César Isabela, Leite Elaine Amaral, Lopes Sávia Caldeira Araújo, Ferretti Alice, Rubello Domenico, Townsend Danyelle M., de Oliveira Mônica Cristina, Cardoso Valbert Nascimento, de Barros André Luís Branco, Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes, Drug Delivery and Translational Research, 9, 1, 2019. Crossref

  33. Choi Hoon, Liu Ting, Qiao Hui, Chacko Ann-Marie, Hu Shang-Hsiu, Chen San-Yuan, Zhou Rong, Chen I-Wei, Biomimetic nano-surfactant stabilizes sub-50 nanometer phospholipid particles enabling high paclitaxel payload and deep tumor penetration, Biomaterials, 181, 2018. Crossref

  34. Kitayama Hiroki, Shinmura Wataru, Yomota Chikako, Saito Hiroyuki, 【Original Contribution】 Study of Surface Properties of Poly(Ethylene Glycol)-Modified Liposomes in Post-Insertion Method, membrane, 38, 1, 2013. Crossref

  35. ISHIDA Tatsuhiro, KIWADA Hiroshi, Accelerated Blood Clearance (ABC) Phenomenon Induced by Administration of PEGylated Liposome, YAKUGAKU ZASSHI, 128, 2, 2008. Crossref

  36. Zawada Zygmunt H., Interaction of liposomes and gammaglobulins. Gel chromatography and fluorescence studies, in Spectroscopy of Biological Molecules: New Directions, 1999. Crossref

  37. Adler-Moore Jill, Lewis Russell E, Brüggemann Roger J M, Rijnders Bart J A, Groll Andreas H, Walsh Thomas J, Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B, Clinical Infectious Diseases, 68, Supplement_4, 2019. Crossref

  38. Takanashi Y., Ishida T., Meguro T., Kirchmeier M. J., Allen T. M., Zhang J. H., A Novel Drug Delivery System as Prophylaxis for Cerebral Vasospasm, in Cerebral Vasospasm, 77, 2001. Crossref

  39. Ishida Tatsuhiro, Kiwada Hiroshi, Unexpected Reactions by In Vivo Applications of PEGylated Liposomes, in Safety of Nanoparticles, 2009. Crossref

  40. Третьякова Д.С., Онищенко Н. Р., Вострова А.Г., Водовозова Е.Л., ВЗАИМОДЕЙСТВИЯ ПРОТИВООПУХОЛЕВЫХ ЛИПОСОМ, НЕСУЩИХ ЛИПОФИЛЬНЫЕ ПРОЛЕКАРСТВА В БИСЛОЕ, С БЕЛКАМИ ПЛАЗМЫ КРОВИ, "Биоорганическая химия", Биоорганическая химия, 6, 2017. Crossref

  41. Glassman Patrick M., Muzykantov Vladimir R., Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems, Journal of Pharmacology and Experimental Therapeutics, 370, 3, 2019. Crossref

  42. Zawada Zygmunt H., Interactions Of Liposomes And Ige. Immunoassay And Fluorescence Study, in Spectroscopy of Biological Molecules: New Directions, 1999. Crossref

  43. La-Beck Ninh M., Islam Md. Rakibul, Markiewski Maciej M., Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine, Frontiers in Immunology, 11, 2021. Crossref

  44. Adler Anna, Inoue Yuuki, Sato Yuya, Ishihara Kazuhiko, Ekdahl Kristina N., Nilsson Bo, Teramura Yuji, Synthesis of poly(2-methacryloyloxyethyl phosphorylcholine)-conjugated lipids and their characterization and surface properties of modified liposomes for protein interactions, Biomaterials Science, 9, 17, 2021. Crossref

  45. Polaka Suryanarayana, Katrajkar Kiran, Siva Reddy D.V., Shukla Havish, Arafat Basel, Tekade Rakesh Kumar, Factors affecting the pharmacokinetics of the liposomal drugs, in Biopharmaceutics and Pharmacokinetics Considerations, 2021. Crossref

  46. Wibroe Peter P., Moghimi S. Moein, Complement Sensing of Nanoparticles and Nanomedicines, in Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices Volume 2, 1113, 2012. Crossref

  47. Yin Ligeng, Dalsin Molly C., Sizovs Antons, Reineke Theresa M., Hillmyer Marc A., Glucose-Functionalized, Serum-Stable Polymeric Micelles from the Combination of Anionic and RAFT Polymerizations, Macromolecules, 45, 10, 2012. Crossref

  48. Liu Xingang, Wu Min, Hu Qinglian, Bai Hongzhen, Zhang Shuoqing, Shen Youqing, Tang Guping, Ping Yuan, Redox-Activated Light-Up Nanomicelle for Precise Imaging-Guided Cancer Therapy and Real-Time Pharmacokinetic Monitoring, ACS Nano, 10, 12, 2016. Crossref

  49. Romberg Birgit, Oussoren Christien, Snel Cor J., Hennink Wim E., Storm Gert, Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s, Pharmaceutical Research, 24, 12, 2007. Crossref

  50. Lu Jiao, Owen Shawn C., Shoichet Molly S., Stability of Self-Assembled Polymeric Micelles in Serum, Macromolecules, 44, 15, 2011. Crossref

  51. Nunes Shirleide Santos, de Oliveira Silva Juliana, Fernandes Renata Salgado, Miranda Sued Eustaquio Mendes, Leite Elaine Amaral, de Farias Marcelo Alexandre, Portugal Rodrigo Villares, Cassali Geovanni Dantas, Townsend Danyelle M., Oliveira Mônica Cristina, de Barros André Luís Branco, PEGylated versus Non-PEGylated pH-Sensitive Liposomes: New Insights from a Comparative Antitumor Activity Study, Pharmaceutics, 14, 2, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain