Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Therapeutic Drug Carrier Systems
Facteur d'impact: 2.9 Facteur d'impact sur 5 ans: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN Imprimer: 0743-4863
ISSN En ligne: 2162-660X

Volume 36, 2019 Volume 35, 2018 Volume 34, 2017 Volume 33, 2016 Volume 32, 2015 Volume 31, 2014 Volume 30, 2013 Volume 29, 2012 Volume 28, 2011 Volume 27, 2010 Volume 26, 2009 Volume 25, 2008 Volume 24, 2007 Volume 23, 2006 Volume 22, 2005 Volume 21, 2004 Volume 20, 2003 Volume 19, 2002 Volume 18, 2001 Volume 17, 2000 Volume 16, 1999 Volume 15, 1998 Volume 14, 1997 Volume 13, 1996 Volume 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v24.i3.20
pages 257-306

Pharmaceutical and Biomedical Potential of Surface Engineered Dendrimers

Jitendra Satija
Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (M.P.) 470003, India
Umesh Gupta
Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan India 305817
Narendra Kumar Jain
Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar (MP) 470003, India; School of Pharmacy, Rajiv Gandhi Technical University, Bhopal (MP), India


Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a consequence of ideal hyperbranched architecture and the biocompatible nature of engineered dendrimers, their utilization has been included in the scope of this review, which focuses on current surface alteration strategies of dendrimers for their potential use in drug delivery and explains the possible beneficial applications of these engineered dendrimers in the biomedical field.

Articles with similar content:

Recent Progress in Dendrimer-Based Nanocarriers
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.23, 2006, issue 6
Fakhrul Ahsan, Amit Rawat, Shuhua Bai, Chandan Thomas
A Review on Potential of Proteins as an Excipient for Developing a Nano-Carrier Delivery System
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 5
Pubali Dhar, Amrita Chakraborty
Functional Polymeric Nanoparticles: An Efficient and Promising Tool for Active Delivery of Bioactives
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.23, 2006, issue 4
Senthilkumar Murugesan, Tathagata Dutta, Abhay Asthana, Manoj Tare, Surbhi Saraf, Narendra Kumar Jain, Vijayaraj Rajkumar, Manoj Nahar, Dinesh Mishra
Targeted Delivery of Drugs to the Gastrointestinal Tract
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.18, 2001, issue 4
E. C. Lavelle
Recent Advances in Self-Emulsifying Drug Delivery Systems (SEDDS)
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 2
Premjeet Singh Sandhu, Ravinder Kaur, Sarwar Beg, Bhupinder Singh, Om Parkash Katare, Rajneet Kaur Khurana