Abonnement à la biblothèque: Guest
Visualization of Mechanical Processes: An International Online Journal

Publication de 4  numéros par an

ISSN En ligne: 2152-209X

Flow and Heat Transfer around Finned-Heat Sink in Electronic Enclosure with Axial Cooling Fan

Volume 2, Numéro 2, 2012,
DOI: 10.1615/VisMechProc.v2.i1.10
Get accessGet access

RÉSUMÉ

This study describes effects of cooling fans on flow and heat transfer characteristics in electronic equipment. We especially focus on flow and heat transfer performance in a narrow duct which simulates a tight flow pass in thin electronic systems and includes a fan and a finned heat sink. To investigate effects of a flow generated by a fan, flow visualization in the duct and thermal resistance measurement of the heat sink mounted in the duct are performed. We compared the results of the experiment in the case of the fan flow with those of the straightened flow. From the results, it is found that a prerotation flow around the fan causes swirl and turbulence in the duct flow and this affects heat transfer performance of the heat sink. This may be one factor in an incorrect prediction of forced convection cooling driven by a fan.

RÉFÉRENCES
  1. Egan, V., Stafford, J., Walsh, P., and Walsh, E., , An experimental study on the design of miniature heatsinks for forced convection air cooling, J. Heat Transfer, vol. 131, pp. 071402-1-071402-9, 2009. DOI: 10.1115/1.3110005

  2. Isoshima, N., Watanabe, M., Ri, M., Yamada, Y., Sugimoto, K., Tsukamoto, K., and Shiraishi, M.,, Development of a low-noise and high-performance cooling structure for full-HD plasma display TV sets, Proc. of ASME InterPack'09, IPACK2009-89041, 2009. DOI: 10.1115/InterPACK2009-89041

  3. Nakamura, H.,, Cooling fan model for thermal design of compact electronic equipment (improvement of modeling using PQ curve), Proc. of ASME InterPack'09, IPACK2009-89010, 2009. DOI: 10.1115/InterPACK2009-89010

  4. Fukue, T., Ishizuka, M., Nakagawa, S., Hatakeyama, T., and Koizumi, K.,, Model for predicting performance of cooling fans for thermal design of electronic equipment (modeling and evaluation of effects from electronic enclosure and inlet sizes), Heat Transfer−Asian Research, vol. 40, no. 4, pp. 369-386, 2011. DOI: 10.1002/htj.20347

  5. Nakamura, H., Fukue, T., Koizumi, K., and Ishizuka, M.,, Reduction in flow rate of small cooling fans by an obstruction, Trans. JSME Series B, vol. 76, no. 768, pp. 1184-1190, 2010 (in Japanese).

  6. Alic, G., Siroc, B., and Hocevar, M., Method for modifying axial fan's guard grill and its impact on operating characteristics, Forsch. Ingenieurwes., vol. 74, no. 2, pp. 87-98, 2010. DOI: 10.1007/s10010-010-0118-z

  7. Grimes, R. and Davis, M., Air flow and heat transfer in fan cooled electronic systems, J. Electron. Packag., vol. 126, pp. 124-134, 2004. DOI: 10.1115/1.1649241

  8. ANSYS, Inc., , ANSYS−Simulation driven product development. Retrieved May 22, 2012, from http://www.ansys.com/, (2011).

  9. Oyakawa, K., Senaha, I., and Mabuchi, I., Augmentation of heat transfer in a tube with a blade wheel at inlet (in Japanese), Trans. JSME Series B, vol. 60, no. 575, pp. 2532-2537, 1994. DOI: 10.1299/kikaib.60.2532

  10. The Japan Society of Mechanical Engineers, JSME Data Book: Heat Transfer, 5th ed., Tokyo: Maruzen, 2009 (in Japanese).

  11. The Japan Society of Mechanical Engineers, JSME Mechanical Engineers' Handbook Applications g 2: Fluid Machinery, Tokyo: Maruzen, 2007 (in Japanese).

  12. Fukue, T., Ishizuka, M., Hatakeyama, T., Nakagawa, S., Koizumi, K., and Nakayama, W., Resistance network Analysis of airflow and heat transfer in a thin electronic equipment enclosure with an axial cooling fan, Proc. of the 21st International Symposium on Transport Phenomena, IS01-03, 2010.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain