Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volume 79, 2020 Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v79.i1.30
pages 29-38


Narimane Hadjadji
Telecommunications Laboratory (LT), Faculty of Science and Technology, Université 8 Mai 1945 Guelma, BP-401, Guelma 24000, Algeria
R. Hamdi
Telecommunications Laboratory (LT), Université 8 Mai 1945 Guelma, BP-401, Guelma 24000, Algeria


This paper investigates the performance of 5.12 Tbps Dense Wavelength-Division Multiplexing (DWDM) transmission using 40 channels with 128-Gbps Polarization Division Multiplexing-0.3 return to zero-quadrature phase-shift keying Quadrature Phase Shift Keying (PDM-0.3RZ-QPSK) modulation format. The prime advantage of the proposed work is improving the transmission performance by increasing the signal quality and the maximum reach. This is achieved by using the digital backpropagation algorithm as a nonlinearity compensation technique. The considerable nonlinear effects are the self-phase modulation (SPM), the cross-phase modulation (XPM). The maximum achievable transmission distances obtained at a bit error rate of 3.8×10-3 are 4800 km and 2400 km for the single and DWDM transmission, respectively.


  1. Alvarado, A., Fehenberger, T., Chen, B., and Willems, F.M.J., (2018) Achievable information rates for fiber optics: Applications and computations, J. Lightwave Technol., 36(2), pp. 424-439.

  2. Gurkin, N.V., Mikhailov, V., Nanii, O.E., Novikov, A.G. et al., (2014) Experimental investigation of nonlinear noise in long-haul 100-Gb/s DP-QPSK communication systems using real-time DSP, Laser Physics Letters, 11(9), pp. 095103.

  3. Winzer, P.J., Neilson, D.T., and Chraplyvy, A.R., (2018) Fiber-optic transmission and networking: the previous 20 and the next 20 years, Opt. Express., 26(18), pp. 24190-24239.

  4. Xu, T., Karanov, B., Shevchenko, N.A., Lavery, D. et al., (2018) Spectral Broadening Effects in Optical Communication Networks: Impact and Security Issue, Proc. of 10th Intl. Advanced Infocomm Technol (ICAIT), Conf., 10.

  5. Agrawal, P., (2010) Fiber-Optic Communication Systems, New York, John Wiley & Sons.

  6. Amari, A., Dobre, O.A., Venkatesan, R., Kumar, O.S., Ciblat, P., and Jaouen, Y., (2017) A survey on fiber nonlinearity compensation for 400 Gb/s and beyond optical communication systems, IEEE Communications Surveys & Tutorials., 19(4), pp. 3097-3113.

  7. Xu, T., Shevchenko, N.A., Karanov, B., Lavery, D. et al., (2017) Nonlinearity Compensation and Information Rates in Fully-Loaded C-band Optical Fibre Transmission Systems, Proc. of 43rd Intl. Euro Optical Communication (ECOC), Conf., 43, pp. 1-3.

  8. Gaiarin, S., Perego, A.M., da Silva, E.P., Da Ros, F., and Zibar, D., (2018) Dual-polarization nonlinear Fourier transform-based optical communication system, Optica, 5(3), pp.263-270.

  9. Secondini, M., Rommel, S., Fresi, F., Forestieri, E. et al., (2015) Coherent 100G nonlinear compensation with single-step digital backpropagation, Proc. of Intl. Optical Network Design and Modeling (ONDM), Conf., 19, pp. 63-67.

  10. Hu, H., Jopson, R.M., Gnauck, A.H., Randel, S., and Chandrasekhar, S., (2017) Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations, Opt. Express., 25(3), pp. 1618-1628.

  11. Makovejs, S., Torrengo, E., Millar, D.S., Killey, R.I. et al., (2011) Comparison of pulse shapes in a 224 Gbit/s (28 Gbaud) PDM-QAM16 long-haul transmission experiment, Proc. of Optical Fiber Communication and Exposition and the National Fiber Optic Engineers (OFC/NFOEC), Conf., pp. 1-3.

  12. Silva, E., Carvalho, L., Franciscangelis, C., Diniz, J (2013) Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid, Proc. of Optical Fiber Communication and Exposition and the National Fiber Optic Engineers (OFC/NFOEC), Conf., pp. 1-3.

  13. Koike-Akino, T., Millar, D.S., Parsons, K., and Kojima, K., (2018) Evolutionary Design of Pulse- Shaping FIR Filter to Mitigate Fiber Nonlinearity, Proc. of Signal Processing in Photonic Communications (SPPCOM /OSA), Conf., pp. SpM4G-4.

  14. Zhao, J., Liu, Y., and Xu, T. (2019) Advanced DSP for Coherent Optical Fiber Communication, Appl. Sci, 9(19), pp. 4192.

  15. Shankar, R., Kumar, I., and Mishra, R.K., (2019) Outage Probability Analysis of MIMO-OSTBC Relaying Network Over Nakagami-m Fading Channel Conditions, Treatment du Signal., 36(1), pp. 59-64.

  16. Selvendran, S., Sivanantharaja, A., and Esakkimuthu, K., (2018) Investigation on the Influence of Duobinary and CSRZ Modulation Formats on Self Phase Modulation Effect in Optical Communication Network., Int. J. Sci. Res. Phys. Appl. Sci., 6, pp. 17-22.

  17. Secondini, M. and Forestieri, E., (2014) On XPM mitigation in WDM fiber optic systems, IEEE Photonics Technol. Lett., 26(22), pp. 2252-2255.

  18. Xu, T., Karanov, B., Shevchenko, N.A., Lavery, D. et al., (2017) Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect, Scientific Reports., 7(1), pp. 12986.

  19. Napoli, A., Maalej, Z., Sleiffer, V.A., Kuschnerov, M. et al., (2014) Reduced complexity digital back-propagation methods for optical communication systems, J. Lightwave Technol., 32(7), pp. 1351-1362.

Articles with similar content:

Evaluation of the Maximum Range of Ultra Wideband Radio Communication in Conditions of a Restricted Radiation Level
Telecommunications and Radio Engineering, Vol.66, 2007, issue 11
A. V. Berdyshev, Vladimir B. Avdeev
Telecommunications and Radio Engineering, Vol.78, 2019, issue 17
V. Noor Mohammed, A. Dhariwal
Radio Physics and Radio Astronomy, Vol.3, 2012, issue 1
R. A. Motiyenko, L. Margules, E. A. Alekseev
Heat Pipe Science and Technology, An International Journal, Vol.6, 2015, issue 1-2
Lucio Araneo, Sauro Filippeschi, Marco Marengo, Miriam Manzoni, Mauro Mameli
Telecommunications and Radio Engineering, Vol.78, 2019, issue 3
W. Hu, Q. Guo, Y. Zheng, S. N. Shulga, F. Lu, L. Mao, Y. Zhao