Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 79, 2020 Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v79.i1.10
pages 1-16

TROPOSPHERIC SCINTILLATION EFFECTS ON SATELLITE LINKS FROM X-BAND TO Q-BAND OVER NIGERIAN CLIMATIC ZONES USING KARASAWA AND ITU-R MODELS

Oluropo F. Dairo
Redeemer's University, Department of Physical Sciences, P.M.B. 230, Ede, Osun State 232102, Nigeria
A. A. Willoughby
Redeemer's University, Department of Physical Sciences, P.M.B. 230, Ede, Osun State 232102, Nigeria
Samuel O. Adesanya
Department of Mathematical Sciences Redeemer's University, P.M.B. 230, Ede, Osun State 232102, Nigeria
L. B. Kolawole
Redeemer's University, Department of Physical Sciences, P.M.B. 230, Ede, Osun State 232102, Nigeria

RÉSUMÉ

The tropospheric scintillation of satellite communication signals has continued to draw the attention of radio engineers. The effect and prevalent paucity of Earth-space tropospheric scintillation data in Africa are remarkable. The parameters of NigComSat-1R and Eutelsat-36B satellites were used for this modeling from X- to Q-band during the West African monsoon (WAM). The low error rates of Karasawa and ITU-R models reported for the tropical climates made them appropriate for this study. In situ data from the Tropospheric Data Acquisition Network stations spanning three climatic regions in Nigeria, namely Tropical Monsoon, Geo. 6.5° N, 3.5° E; Tropical Savanna, Geo. 8.99° N, 7.38° E; and the Sahel, Geo. 9.35° N, 12.5° E. The scintillation variability is lowest in the tropical monsoon climate and highest in the Sahel climate using both models. However, the ITU-R model recorded higher scintillation fade depths (SFDs) of 37.19 dB, 2.91 dB, and 2.52 dB, for low elevation, NigComSat-1R and Eutelsat-36B satellites respectively, over the tropical monsoon climatic zone, than Karasawa model, which recorded SFDs of 34.07 dB, 1.31 dB, and 1.09 dB for the respective satellites. The observed scintillation intensity increased with increasing carrier frequency, low elevation angle and small receiving antenna. High variability of the scintillation intensity characterizes the onset of WAM and post-monsoon months.

RÉFÉRENCES

  1. Mrak, S., Hrovat, A., Vidmar, M., and Vilhar, A., (2018) A discrete-components millimeter-wave satellite beacon receiver for q-band propagation experiment, International Journal of Satellite Communications and Networking, 36(4), pp. 372-382. doi:10.1002/sat.1240.

  2. Ajiboye, A., Abdulrahman, A., Falade, A., Ajiboye, A. et al., (2017) Effects of ionospheric scintillation on communication systems: Gps and satellite, Telecommunications and Radio Engineering, 76(20), pp. 1849-1859. doi:10.1615/TelecomRadEng.v76.i20.50.

  3. Dairo, O.F. and Kolawole, L.B., (2017) Statistical Analysis of Tropospheric Scintillation of Satellite Communication Signals using Karasawa and ITU-R Models, IEEE 3rd International Conference on Proceedings-Electro-Technology for National Development NIGERCON, (ISSN 2377-2697), pp. 347-352. doi:https://doi.org/10.1109/NIGERC0N.2017.8281906.

  4. Maral, G. and Bousquet, M., (2010) Satellite Communications Systems: Systems, Techniques and Technology, John Wiley and Sons Ltd, Hoboken, United States.

  5. Pratt, T., Bostian, C., and Allnutt, J., (2003) Satellite Communications, John Wiley and Sons, Inc., New York.

  6. Stutlman, W.L. and Chakraborty, D., (1992) The Olympus and ACTS propagation measurement campaigns in the U.S., 14th International Communication Satellite Systems Conference and Exhibit held at, Washington DC, pp. 1435-1439.

  7. Allnut, J.E. and Rogers, D.V., (1989) Low-fade-margin systems: propagation considerations and implementation approaches, 6th International Conference on Antennas and Propagation (ICAP' 89), pp. 6-9.

  8. Ippolito, L.J., (2008) Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design, and System Performance, John Wiley & Sons, Sussex, U.K.

  9. Luini, L., Riva, C., Emiliani, L., and Nessel, J., (2019) Modeling the Impact of Rain and Clouds on Earth-Space Site Diversity Systems, IEEE Transactions on Antennas and Propagation, 67(1), pp. 475-483. doi:10.1109/TAP.2018. 2876712.

  10. Cox, D.C., Arnold, H.W., and Hoffman, H.H., (1981) Observation of Cloud-Produced Amplitude Scintillation on 19- and 28-GHz Earth-Space paths, Radio Science, 17(5), pp. 885-907.

  11. Hinder, R.A., (1970) Observations of atmospheric turbulence with a radio telescope, Nature, 225, pp. 614-617.

  12. Karasawa, Y. and Matsudo, T., (1991) Characteristics of fading on low-elevation angle earth-space paths with concurrent rain attenuation and scintillation, IEEE Trans. Ant. Prop., 39, pp. 657-661.

  13. Otung, I.E. and Savvaris, A., (2006) Estimating tropospheric scintillation intensity on earth-space propagation paths, Elec. Let., 42(7), pp. 381-382.

  14. Otung, I.E. and Evans, B.G., (1995) Short Term Distribution of Amplitude Scintillation on a Satellite Link, Electronics Letters, 31(16), pp. 1328-1329.

  15. Ojo, J., Adelakun, A., and Edward, O., (2019) Comparative study on radio refractivity gradient in the troposphere using chaotic quantifiers, Heliyon, 5(8), p. e02083. doi:https://doi.org/10.1016/j.heliyon.2019.e02083.

  16. Adeniji, A.E., Olusola, O.I., and Njah, A.N., (2018) Comparative study of chaotic features in hourly wind speed using recurrence quantification analysis, AIP Advances, 8(2), pp. 025102. doi: 10.1063/1.4998674.

  17. Ogunsua, B., Ojo, J., and Adediji, A., (2018) Atmospheric chaoticity and complexity from radio refractivity derived from Akure station, Advances in Space Research, 62(7), pp. 1690-1701. doi:https://doi.org/10.1016/j.asr2018.06.035.

  18. Strohbehn, J.W., (1968) Line-of-sight wave propagation through the turbulent atmosphere, Proc. of the IEEE, 56(8), pp. 1301-1318.

  19. Fang, D.J., (1980) 4/6 GHz ionospheric scintillation measurements, AGARD Conf. Proc. 284 Propagation Effects in Space/Earth Paths 33, pp. 1-12.

  20. Haddon, J. and Vilar, E., (1986) Scattering induced microwave scintillations from clear-air and rain on earth-space paths and the influence of antenna aperture, IEEE Trans. AP, 34, pp. 646-651.

  21. Vellinga, M., Arribas, A., and Graham, R., (2010) Seasonal forecasts for regional onset of the West African Monsoon, Clim. Dyn., 40, pp. 3047-3070. URL https://doi.org/10.1007/s00382-012-1520-z.

  22. Brandt, P., Caniaux, G., Bourles, B., Lazar, A. et al., (2011) Equatorial upper-ocean dynamics and their interaction with the West African monsoon, Atmos. Sci. Lett., 12, pp. 24-30.

  23. Coetlogon, G.D., Janicot, S., and Lazar, A., (2010) Intraseasonal variability of the ocean - atmosphere coupling in the Gulf of Guinea during boreal spring and summer, Q. J. R. Meteorol. Soc, 136, pp. 426-441. URL https://doi.org/10.1002/qj.554.

  24. Akala, A.O., Amaeshi, L.L.N., Somoye, E.O., Idolor, R.O. et al., (2015) Climatology of gps amplitude scintillations over equatorial Africa during the minimum and ascending phases of solar cycle 24, Astrophysics and Space Science, 357(1), pp. 1-17. doi:10.1007/s10509-015-2292-9.

  25. Webber, R.V. and McCormick, K.S., (1980) Low elevation angle measurements of the ATS-6 beacons at 4 and 30 GHz, Ann. Telecomm., 35, pp. 1n-7n.

  26. Vogel, W.J., Straiton, A.W., and Fannin, B.M., (1977) Ats-6 ascending: near horizon measurements over water at 30 GHz, Radio Science, 12, pp. 757-765.

  27. Stutlman, W.L., Bostian, C.W., Manus, E.A., Marshall, R.E., and Wiley, P.H., (1975) ATS-6 satellite 20 GHz propagation measurements at low elevation angles, Electronics Letters, 11, pp. 635-636.

  28. McCormick, K.S. and Maynard, L.A., (1971) Low angle tropospheric fading in relation to satellite communications and broadcasting, Int. Conf. on Comm. ICC-7I-CIC, 12, pp. 12.18-12.23.

  29. Lam, W.I., (1988) Low angle signal fading at 38 GHz in the high Arctic, IEEE Trans. AP, 35, pp. 1495-1499.

  30. Strickland, J.I., Olsen, R.I., and Westiuk, H.L., (1977) Measurement of low angle fading in the Canadian Arctic, Ann. Telecomm., 32, pp. 530-535.

  31. Osen, O., (1980) Propagation effects in high latitudes, Proc. International Symposium on Symphonie, pp. 415-423.

  32. Otung, I.E., Mahmoud, M.S., and Norbury, J.R., (1995) Radiowave amplitude scintillation intensity: Olympus satellite measurements and empirical model, Electronics Letters, 31(21), pp. 1873-1875.

  33. Otung, I.E., Mahmoud, M.S., and Norbury, J.R., (1995) Differential amplitude scintillation in a Ka- band satellite link, International Conference on Antennas & Propagation (ICAP 95), Eindhoven, Netherlands, 407(2), pp. 85-88.

  34. Haidara, F.M., Bostian, C.W., and Pratt, T., (1994) Measurements of tropospheric scintillations on a 14-degree path at 12, 20, and 30 GHz, AIAA-94, pp. 921-931.

  35. Vanhoenacker, D. and Poirares Baptista, J.P.V., (1994) Atmospheric scintillation, in: OPEX Reference Book on Attenuation Measurement and Prediction, ESA WPP-083, pp. 51 -64.

  36. Ortgies, G., (1993) Frequency dependence of slant-path amplitude scintillations, Elec. Let., 29(25), pp. 2219-2220.

  37. Akinwumi, S., Omotosho, T., Usikalu, M., Adagunodo, T. et al., (2018) Analysis and comparison of tropospheric scintillation prediction models at covenant university, IOP Conference Series: Earth and Environmental Science, 173(1). doi:10.1088/1755-1315/173/1/012015.

  38. Madhuri, A., Immadi, G., and Narayana, M., (2018) Estimation of cumulative distribution of scintillation effect on Ku band frequencies for one of the tropical regions using various models, Journal of Engineering Science and Technology Review, 11(1), pp. 151-155.

  39. Rabiul Hossain, M., Uddin, N., Zafar Md Imran, A., Jashim Uddin, M., and Gafur, A., (2018) Comparative analysis on tropospheric scintillation prediction models for Bangladeshi climate, Int. Conference on Innovations in Science, Engineering and Technology, ICISET, pp. 412-417.

  40. Mandeep, J. and Zali, R., (2011) Analysis and comparison model for measuring tropospheric scintillation intensity for Ku-band frequency in Malaysia, Earth Sciences Research Journal, 15, pp. 13-17.

  41. Chen, C.Y. and Singh, M.J., (2014) Comparison of tropospheric scintillation prediction models of the Indonesian climate, Earth, Planets and Space, 66(1), p. 64. doi:10.1186/1880-5981-66-64.

  42. Vanhoenacker-Janvier, D., Quibus, L., Rytir, M., and Tjelta, T., (2017) Measurement and modeling of tropospheric scintillation in Ka/Q band, 11th European Conference on Antennas and Propagation, EUCAP, pp. 1486-1490. doi:10.23919/EuCAP.2017.7928514.

  43. Gimonet, M.E., Van De Kamp, M.M.J.L., Marzano, F.S., Riva, C., and Salonen, E.T., (2002) Cost Action 255: Radiowave Propagation Modelling for SatCom Services at Ku-Band and Above Final Report, European Space Agency, Ch. Scintillation/Dynamics of the signal, pp. 1-11.

  44. Van De Kamp, M.M.J.L., Tervonen, J.K., Salonen, E.T., and Poirares Baptista, J.P.V., (1999) Improved models for long-term prediction of tropospheric scintillation on slant paths, IEEE Trans. Ant. Prop., 47(2), pp. 249-260.

  45. Tervonen, J.K., Van De Kamp, M.M.J.L., and Salonen, E.T., (1998) Prediction Model for the Diurnal Behavior of the Tropospheric Scintillation Variance, IEEE Transactions on Antennas and Propagation, 46(9), pp. 1372-1378.

  46. Peetters, G., Marzano, F.S., d'Auria, G., Riva, C., and Van Hoenacker-Janvier, D., (1997) Evaluation of Statistical Models for Clear-Air Scintillation Prediction Using Olympus Satellite Measurements, International Journal of Satellite Communications, 15, pp. 73-88.

  47. Karasawa, Y., Yasukawa, K., and Yamada, M., (1988) Tropospheric scintillation in the 14/11-GHz bands on Earth-space paths with low elevation angles, IEEE Trans. Ant. Prop., 36(4), pp. 563-569.

  48. ITU-R P.453-13, The radio refractive index: Its formula and refractivity data, Tech. rep., ITU, Geneva, Switzerland (2017).

  49. Harris, R.A., (2002) Cost Action 255: Radiowave Propagation Modelling for SatCom Services at Ku- Band and Above Final Report, COST 255 Final Report, SP-1252 ISBN 92-9092-608-2., European Space Agency, Brussels.

  50. Marzano, F.S. and d'Auria, G., (1998) Model-based prediction of amplitude scintillation variance due to clear-air tropospheric turbulence on Earth-satellite microwave links, IEEE Trans. Ant. Prop., 46(10), pp. 1506-1518.

  51. ITU-R P.618-12, Propagation data and prediction methods required for the design of Earth-space telecommunication systems, Tech. rep., ITU, Geneva, Switzerland (2015).

  52. Dairo, O.F. and Kolawole, L.B., (2018) Radio refractivity gradients in the lowest 100 m of the atmosphere over Lagos, Nigeria in the rainy-harmattan transition phase, Journal of Atmospheric and Solar-Terrestrial Physics, 167, pp. 169-176. doi:https://doi.org/10.1016/j.jastp.2017.12.001.

  53. Ojo, J.S., Rabiu, B., Radicella, S.M., and Obiyemi, O.O., (2018) Experimental analysis and comparison of tropospheric scintillation prediction models using eutelsat-36b satellite in a tropical Nigeria, International Journal of Basic and Applied Sciences, 7(1), pp. 8-14.

  54. Karasawa, Y., Yamada, M., and Allnut, J.E., (1988) A new prediction method for tropospheric scintillation on Earth-space paths, IEEE Trans. Ant. Prop., 36(11), pp. 1608-1614.

  55. Crane, R.K. and Blood, D.W., (1979) Handbook for the Estimation of Microwave Propagation Effects, Technical Report No 1 Doc. 7376- TR1, NASA Contract NAS5-25341, NASA GSFC Greenbelt, MA, USA (June 1979).


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF SPECTRAL CHARACTERISTICS OF HF SIGNALS ON LONG- AND ULTRA-LONG-RANGE RADIO PATHS
Radio Physics and Radio Astronomy, Vol.1, 2010, issue 2
Ivan I. Pikulik, S. B. Kashcheyev, A. B. Koloskov, Vladimir G. Galushko, A. I. Orlov, V. I. Kurkin, Yu. M. Yampolski, P. V. Petko, G. I. Litovkin
ESTIMATING SHADOW-ZONE PARAMETERS OF TROPOSPHERIC REFRACTION FROM THE RADIATION OF REMOTE SOURCES. PART II: EXPERIMENT
Telecommunications and Radio Engineering, Vol.74, 2015, issue 10
G. M. Morgun, V. A. Kabanov, V. B. Sinitski, I.S. Tourgenev
ON THE POSSIBILITY OF RECOVERING SPATIAL DISTRIBUTION OF IONOSPHERIC INHOMOGENEITIES USING DATA FROM IMAGING RIOMETERS
Radio Physics and Radio Astronomy, Vol.3, 2012, issue 4
O. V. Charkina
EFFECTS OF IONOSPHERIC SCINTILLATION ON COMMUNICATION SYSTEMS: GPS AND SATELLITE
Telecommunications and Radio Engineering, Vol.76, 2017, issue 20
A. Y. Abdulrahman, O. S. Zakariyya, A. J. Falade, A. T. Ajiboye, A. Ajiboye, T. A. Rahman
Metagrammars and Particularities in their Application to Formal Description of Signals and Protocols
Telecommunications and Radio Engineering, Vol.62, 2004, issue 1-6
O. I. Atakishchev