Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 79, 2020 Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v56.i8-9.20
26 pages

Phase-Equivalent Matrix Potentials

Elena Ivanovna Bondarenko
Postgraduate student of the Mathematical Physics Department of the B.I. Verldn FTINT Institute of the National Academy of Sciences of Ukraine
Fedor Semenovich Rofe-Beketov
Doctor of Sciences (Phys.-Malh.), Professor, Leading Researcher of the Mathematical Physics Department of the B.I. Verkin FTINT Institute of the National Academy of Sciences of Ukraine.

RÉSUMÉ

The scattering problem is considered for the system of radial Schrodinger equations. For matrix potentials having the first moments, two different extensions of the concept of phase equivalence are introduced and studied along with admissible perturbations of normalization matrices for the Hermi-tian and non-Hermitian problems. For the introduced classes of non-Hermitian problems, characteristic properties of scattering data are established, which, in the Hermitian case, pass into the Marchenko-Agranovich conditions.


Articles with similar content:

THE NEW SOLUTION OF THE ILL-POSED INVERSE PROBLEMS OF ELECTROMAGNETIC WAVES DIFFRACTION. 1. GENERAL THEORY
Telecommunications and Radio Engineering, Vol.69, 2010, issue 4
K. S. Shifrin, A. Y. Perelman, I. V. Bulavinscky
Constructing Maximal Sets of Practical Weak Stability of Differential Inclusions
Journal of Automation and Information Sciences, Vol.37, 2005, issue 7
Fedor G. Garashchenko, Vladimir V. Pichkur
Properties of Optimal Sets of External Practical Weak Stability of Differential Inclusions
Journal of Automation and Information Sciences, Vol.36, 2004, issue 1
Fedor G. Garashchenko, Vladimir V. Pichkur
Collective Processes Modeling by Means of Particles with Complex Structure
Journal of Automation and Information Sciences, Vol.43, 2011, issue 9
Boris A. Beletskiy
Bilinear Markov Processes of Searching for Moving Targets
Journal of Automation and Information Sciences, Vol.33, 2001, issue 5-8
Karen G. Dzyubenko, Arkadiy A. Chikriy