Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 79, 2020 Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i15.10
pages 1297-1309

SOURCEWISE REPRESENTATION OF THE ELECTRIC GREEN FUNCTION FOR A FIELD OF THE CIRCULAR CAVITY

S. D. Prijmenko
National Science Center "Kharkiv Institute of Physics and Technology", Kharkiv, Ukraine

RÉSUMÉ

A singular part of the electric Green function for a field of the circular cavity is singled out in an explicit form as an infinite-space Green function. The problem of construction of the Green function for a field is solved as a problem of the diffraction of tensor divergent spherical and quasi-spherical waves on the circular cavity walls. Analytical expressions for singular and regular parts of the tensor Green function and calculation results obtained for one of its components are presented.


Articles with similar content:

Scattering of an H-polarized Electromagnetic Wave by an Inhomogeneous Anisotropic Inclusion in an Anisotropic Halfspace: A theoretical model
Telecommunications and Radio Engineering, Vol.53, 1999, issue 2
S. N. Shulga
Electric Green Function for a Point Source in Circular Short-Circuit Waveguide Filled by Magnetoactive Plasma
Telecommunications and Radio Engineering, Vol.66, 2007, issue 15
S. D. Prijmenko
Green's Functions for Cylindrical Structures with a Longitudinally-Inhomogeneous Filling
Telecommunications and Radio Engineering, Vol.55, 2001, issue 3
Yu. M. Penkin
Optimal Boundary Control Problem Solution for Inhomogeneous Biharmonic Equations
Journal of Automation and Information Sciences, Vol.46, 2014, issue 7
Lyubov V. Voloshko , Elena M. Kiseleva
Green's Function of Linear and Point Sources of a Circular Waveguide
Telecommunications and Radio Engineering, Vol.55, 2001, issue 1
S. D. Priyemenko