Abonnement à la biblothèque: Guest
Telecommunications and Radio Engineering

Publication de 12  numéros par an

ISSN Imprimer: 0040-2508

ISSN En ligne: 1943-6009

SJR: 0.185 SNIP: 0.268 CiteScore™:: 1.5 H-Index: 22

Indexed in

ENERGY CALCULATION OF THE TERAHERTZ RADIO LINK

Volume 78, Numéro 6, 2019, pp. 537-557
DOI: 10.1615/TelecomRadEng.v78.i6.60
Get accessGet access

RÉSUMÉ

Analysis of the characteristics of digital radio communication via the channels of the terahertz frequency band is carried out taking into account the characteristics of the signal propagation path and determining the signal losses in the operating conditions of the radio relay system in the terahertz frequency band. Based on the analysis it was shown that fading due to attenuation of the signal by the hydrometeors, fading due to radio signal absorption in gases, and fading due to the influence of antenna patterns are the most significant among the known types of fading in the 30…300 GHz frequency band, and they have to be considered when designing. The terahertz band frequency domains, which are the most suitable for use for the radio relay communication lines, are separated. It is shown that operation of terahertz radio relay lines makes it possible to practically disregard the refraction and interference of the electromagnetic waves reflected from the obstacles in the signal propagation zone, which occur especially in dense urban construction areas. The energy calculation of the terahertz radio communication line is carried out on the basis of the developed methodology and the results obtained in the studies performed and the nationally developed means for signal transmission in the terahertz band. The technique is based on using the technology of calculation of an isotropic radiating radio wave, taking into account both the required signal-to-(interference + noise) ratio for the type of modulation applied and compensation for the energy losses on the path under the influence of the distorting factors.

RÉFÉRENCES
  1. Ilchenko, М.Yu., Kravchuk, S.О., and Narytnik, Т.М., (2014) , Subterahertz and terahertz range wireless telecommunication systems, Digital Technologies, 16, pp. 40-59, (in Ukrainian).

  2. Nagatsuma, T., Horiguchi, S., Minamikata, Y., Yoshimizu, Y. et al., (2013) , Terahertz wireless communications based on photonics technologies, Optics Express, 21(21), pp. 23736-23747.

  3. Saiko, V.G., Narytnik, Т.М., Hryshchenko, L.М., Dakova L.V. et al., (2016) , Using of distributed transport radio networks of the terahertz rage under the new generation mobile networks construction, Zviazok, 6, pp.16-21, (in Ukrainian).

  4. Ilchenko, М.Ye., Narytnik, Т.N., Kalinin, V.I., and Cherepenin, V.А., (2011) , Wireless UWB ecologically friendly communications at 70 nanowatt radiation power, Proc. 21st International Crimean Conference (CriMiCo'2011), Sevastopol, Ukraine, pp.355-356.

  5. Ilchenko, M.Ye., Narytnik, T.N., Kuzmin, S.Ye., Fisun, A.I. et al., (2013) , Transceiver for 130- 134 GHZ band and digital radio relay system, Telecommunications and Radio Engineering, 72(17), pp. 1623-1638.

  6. Ilchenko, M.Ye., Narytnik, T.N., and Didkovsky, R.M., (2013) , Clifford algebra in multiple access noise-signal communication systems, Telecommunications and Radio Engineering, 72(18), pp. 1651- 1663.

  7. Bunin, S.G., Voiter, А.P., Ilchenko, М.Ye., Romanyuk, V.А., and Bunin, S.G., Self-Organizing Radio Networks with Ultra-Wideband Signals, Кyiv, Ukraine: Naukova Dumka, 444 p., (in Russian).

  8. Lazorenko, О.V. and Chernogor, L.F., (2008) , Ultrawideband signals and physical processes. 1. Basic concepts, models and description methods, Radio Physics and Radio Astronomy, 13(2), pp. 166-194, (in Russiahn).

  9. Narytnik, Т.М. and Kravchuk, S.О., (2015), Terahertz Band Telecommunication Systems, Zhytomyr, Ukraine: Individual Business “Yevenok О.О.”, 394 p., (in Ukrainian).

  10. Bystrov, R.P. and Sokolov, А.V., (2006) , Millimeter and submillimeter wave propagation and circuits, Radiotekhnika, 5, pp. 11-18, (in Russian).

  11. Bystrov, R.P. and Sokolov, А.V., (2005) , Range of millimeter radar stations in rains, Radiotekhnika, 1, pp. 19-29, (in Russian).

  12. Shakhnovich, I., (2014) , Myth about the attenuation of free space: what G.T. Friis did not write, First mile, 2, pp.40-45, (in Russian).

  13. Parshin, V.V., Tretyakov, М.Yu., Koshelev, М.А. et al., (2013) , Investigation of mm and sub-mm waves absorption using the methods of precise resonator spectroscopy, http://nauchebe.net/2013/02/issledovaniya-pogloshheniya-radiovoln-v-mm-i-submm- diapazonax-metodami-precizionnoj-rezonatomoj-spektroskopii/.

  14. Malyshenko, Yu.I. and Royenko, А.N., (2012) , Millimeter and submillimeter wave attenuation in rains considerihng small droplets in rain drop size distribution, Telecommunications and Radio Engineering, 71(20), pp. 1889-1896.

  15. Saiko, V.G., Hryshchenko, L.М., Dakova, L.V., and Kravchenko, V.І., (2017) , The method for determining optimal parameters of the low-loss transmission windows in terahertz range, Telecommunication and Information Technologies, 1, pp.11-17, (in Ukrainian).

  16. International Telecommunication Union, Recommendation ITU-R Р.676-9, Attenuation by atmospheric gases. P Series. Radiowave propagation, 2012.

  17. Yakovlev, О.I., Yakubov, V.P., Uryadov, V.P., and Pavelyev, А.G., (2009) , Radio Wave Propagation, Мoscow, Russia: LENAND, 496 p., (in Russian).

  18. [Electronic resource] 2016, Resource accessed at: www.micran/.

  19. International Telecommunication Union, Recommendation ITU-R Р.840-5. Attenuation due to clouds and fog. P Series. Radiowave propagation. 2012.

  20. International Telecommunication Union. Recommendation ITU-R Р.838-3, Specific attenuation model for rain for use in prediction methods. P Series. Radiowave propagation, 2005- https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-R.pdf.

  21. Narytnik, Т.N, Volkov, V.V., and Utkin, Yu.V., (2009) , Radio Relay and Tropospheric Transmission Systems, Kyiv, Ukraine: Osnova Publishers, 696 p., (in Russian).

  22. Recommendation ITU-T М.2100 Performance limits for bringing-into-service and maintenance of international multi-operator PDH paths [Electronic resource] https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-M.2100-200304-I!!PDF-R&type=items.

  23. Sklar, B., (2003) , Digital Communication. Fundamentals and Applications, Moscow, Russia: Williams Publishing House, 1104 p., (in Russian).

  24. Nagatsuma, T., Horiguchi, S., Minamikata, Y., and Yoshimizu, Y., Terahertz wireless communications based on photonics technologies, Optics Express, 21(21), pp. 23736-23747.

CITÉ PAR
  1. Pasternak Yuri G., Pendyurin Vladimir A., Safonov Kirill S., Fedorov Sergey M., Development of a phased array antenna powered by Rotman printed lens for a mobile satellite communication terminal, Physics of Wave Processes and Radio Systems, 24, 2, 2021. Crossref

Prochains articles

A Slotted Pentagon Shape Quad Band Two-Element Millimeter Wave MIMO Antenna using Theory of Characteristic Modes Parveez Shariff B G, Sameena Pathan, Pallavi R Mane, Tanweer Ali Design and Develop Low power memory controller for GC-eDRAM cell using ICG Shravan Chintam, Kaleem Fatima, Paidimarry Chandra sekhar Lighting up Data: The Future of Wireless Data Transfer with Li-Fi Technology Balaka Biswas, Aryan Nakhale , Aditya Roshan Sinha Design of Implantable Antennas for Biomedical Applications M Satish Kumar, Sivasubramanyam Medasani , Penchala Reddy Sura, Tathababu Addepalli, Jetti Chandra Sekhar Rao, J Prasanth Kumar, B.Y.V.N.R. Swamy, A L Siridhara Diffraction Problem with Time-Varying Boundary Conditions Fatih Erden A Proposed MIMO Antenna Design for Ultra-Wideband THz Applications Amin Al Ka'bi, Ali Mustafa Interconnection scheme for multi-protocols heterogeneous wireless communication system in civil airport Wei Zhang, He Li, Yuchu Ji, Yang Wang Design and implementation of MIMO antenna for S-band satellite applications Suganya E, Anita Jones Mary Pushpa T, Prabhu T PROPAGATION OF VECTOR VORTEX BEAMS EXCITED BY A TERAHERTZ LASER DIELECTRIC RESONATOR Anrey Degtyarev, Mykola Dubinin, Vyacheslav Maslov, Konstantin Muntean, Oleg Svistunov DEVELOPMENT OF NOVEL CONFORMAL ARRAY ANTENNA FOR AIRBORNE APPLICATIONS Ch V Ravi Sankar, PVY Jayasree, Devana V.N Koteswara Rao , Mohammad Taj, Kolasani Rajkamal, Vegiraju Satya Sudha Hexagonal-Shaped Antenna with DGS for Band-notch Ultra-Wideband and V2X Applications Rahul Kumar Garg, Sarthak Singhal Research and design of multi-attitude DF-GNNRL simulation technology based on satellite downlink beam calculation Liping Qiao, Li Zhang, Lei Feng A Design of Microstrip Low-pass Filter using ground-plane coplanar waveguide (GCPW) Farah Mehdi Chemseddine, Elbouslemti Rahmouna, Vincent Didier Earthen Lamp Shaped DGS Dual Band Microstrip Patch Antenna for High Return Loss in Biomedical Application Sonam Gour, Amit Rathi Compact Inset-Fed Rectangular Patch antenna for C band Applications Albert William raj, K.S.Joseph Wilson Planar Antenna with Pattern Reconfigurability for IoT Applications Srinag A, S. Aruna, K.Srinivasa Naik Advanced Ultrawideband Patch Antenna for Wearable and WBAN Applications Raaunak Chaudhury, Bimal Raj Dutta A COMPACT 2X2 UWB MIMO ANTENNA WITH FUNNEL SHAPED STUB FOR ISOLATION ENHANCEMENT KARTHI J, Palanivelan Manickavelu, Mohanraj Sivagurunathan, Asokan Velu FLEXIBLE WIDE BAND TRAPEZOIDAL ANTENNA FOR ELECTROMAGENTIC HEAD IMAGING SYSTEM Vaithianathan V, Ramprabhu Sivasamy, RAMESH S, Chitra S Impact of supply voltage on SRAM cell power dissipation under different topologies Damodhar Rao M, Y.V. NARAYANA, V.V.K.D.V. PRASAD Defected Ground Square Patch Edge Truncated Polarization Reconfigurable Antenna Pritam Nikam, Jayendra Kumar, Akshay Bhosale, Achinta Baidya, Shahadev Hake An Asymmetrical Psi Shaped Multi-Band Antenna for Wireless Applications Penchala Reddy Sura, Padmaja Nimmagadda, Ch Jyotsna Rani, Tathababu Addepalli, Jagadeesh Babu Kamili, B.Y.V.N.R. Swamy Swamy, A Laxmana Siridhara, G JAGADEESWAR REDDY SMALL SCALE MIMO ANTENNA WITH HIGH ISOLATION FOR 5G COMMUNICATION DILIP KUMAR CHOUDHARY, Tanweer Ali, Rajendra Prasad P, Roshan Zameer Ahmed PERFORMANCE ANALYSIS OF ACHIEVABLE BIT RATES IN RIS-ASSISTED MASSIVE MIMO NETWORKS AT 28 GHZ BAND SHARINI DL, KANTHI M, RAVILLA DILLI EFFECT OF THICK VEGETATION COVER, BUILDING OBSTRUCTIONS, AND EARTH TERRAIN ON THE QUALITY AND PERFORMANCE OF THE GSM SIGNAL AT THE FEDERAL POLYTECHNIC ADO EKITI. Temitope John Alake, Ayodeji Bamisaye, Tolulope Tunji Oladimeji FOUR ELEMENT CIRCULAR PATCH MIMO ANTENNA WITH PROTRUDING GROUND STUB FOR 5G COMMUNICATION Rajalakshmi B, Chitra S DUAL-BAND BANDSTOP FILTERS BASED ON ULTRA THIN FREQUENCY SELECTIVE SURFACES Andrei Perov REAL-TIME IMPLEMENTATION OF LWT BASED NOVEL IR AND VI FUSION ALGORITHM USING RASPBERRY PI PLATFORM Lingamallu Naga Srinivasu, Sumanth Kumar Panguluri, Srinivasa Rao Kandula, Ponduri Vasanthi Fractal Based UWB-MIMO antenna with reconfigurable Band-Notching Characteristics Bharghava Punna, Mohd Sofiyan, N. Siddartha Reddy, Nagarani Bollam
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain