Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volume 79, 2020 Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v78.i5.10
pages 373-383


S. A. Vlasenko
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
А. V. Degtyarev
V. Karazin National University of Kharkiv, 4, Svoboda Sq., Kharkiv, 61022, Ukraine
M. M. Dubinin
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
V. A. Maslov
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine


Wave beams with inhomogeneous spatial polarization of the emission are necessary for solving important fundamental and applied problems related to interaction of electromagnetic waves of terahertz range with matter. These include diagnostics of the material surfaces, thin films, biological objects, terahertz systems of data transfer and processing, attainment of sub-wave resolution in the terahertz tomography, terahertz communication systems etc. Results of investigation of specific features of terahertz wave focusing are practically absent. Based on the Rayleigh-Sommerfeld vector theory, a theoretical investigation has been performed of physical features of the moderate and sharp focusing of laser radiation beams excited by modes of the cavity of a circular metal waveguide with different spatial polarization of the field. The obtained results enhance knowledge on the specific features of focusing of terahertz range laser beams.


  1. Xiaoqiang, Z., Ruishan, C., and Anting, W., (2018) , Focusing properties of cylindrical vector vortex beams, Optics Communications, 414, pp. 10-15. DOI: 10.1016/j.optcom.2017.12.076

  2. Khonina, S.N. and Ustinov, A.V., (2018) , Focusing properties of cylindrical vector vortex beams, Optics Communications, 426, pp. 359-365. DOI: 10.1016/j.optcom.2018.05.070

  3. Fu, J., Yu, X., Wang, Y., and Chen, P., (2018) , Generation of pure longitudinal magnetization needle with tunable longitudinal depth by focusing azimuthally polarized beams, Applied Physics B, 124(11), pp. 1-365. DOI: 10.1007/s00340-017-6886-5

  4. Kozawa, Y. and Sato, S., (2007) , Sharper focal spot formed by higher-order radially polarized laser beams, JOSA A, 24(6), pp. 1793-1798. DOI: 10.1364/JOSAA.24.001793

  5. Zhan, Q. and Leger, J., (2002) , Focus shaping using cylindrical vector beams, Opt. Express, 10(7), pp. 324-331. DOI: 10.1364/OE.10.000324

  6. Chen, Z., Hua, L., and Pu, J., (2012) , Tight focusing of light beams: effect of polarization, phase, and coherence, Progress in Optics, 57, pp. 219-260. DOI: 10.1016/B978-0-44-459422-8.00004-7

  7. Zang, Z., Mao, C., Guo, X., You, G. et al., (2018) , Polarization-controlled terahertz super-focusing, Applied Physics Letters, 113(7), pp. 071102-4-071102-1. DOI: 10.1063/1.5039539

  8. Ruan, D., Li, Z., Du, L., Zhou, X. et al., (2018) , Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array, Applied Optics, 57(27), pp. 7905-7909. DOI: 10.1364/AO.57.007905

  9. Gurin, O.V., Degtyarev, A.V., and Maslov, V.A., (2015) , Propagation and focusing of modes of dielectric resonators of terahertz range lasers, Telecommunications and Radio Engineering, 74(7), pp. 629-640. DOI: 10.1615/TelecomRadEng.v74.i7.60

  10. Gurin, O.V., Degtyarev, A.V., Maslov, V.A., Senyuta, V.S. et al., (2014) , Propagation and focusing of modes of the dielectric resonator of terahertz laser, Laser Optics, 2014 International Conference, Proceedings, St. Petersburg, Russia. DOI: 10.1109/LO.2014.6886325

  11. Kotlyar, V.V. and Kovalev, A.A., (2010) , Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization, J. Opt. Soc., 27(3), pp. 372-380. DOI: 10.1364/JOSAA.27.000372

  12. Volodenko, A.V., Gurin, O.V., Degtyarev, A.V., Maslov, V.A. et al., (2013) , Radiation characteristics of the metal waveguide resonator with a inclined mirror, Telecommunications and Radio Engineering, 72(14), pp. 3149-1359. DOI: 10.1615/TelecomRadEng.v72.i14.70

  13. Gurin, O.V., Degtyarev, A.V., Dubinin, M.M., Maslov, V.A. (2018) , Focusing of Modes for Metallic Resonator of a Terahertz Laser with Nonuniform Spatial Polarization, IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), Proceedings, 2-5 July, Kyiv, Ukraine, pp. 226-229. DOI: 10.1109/MMET.2018.8460368