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In this paper, we present validation of a probabilistic model for mesoscale elastic behavior of materials with microstruc-
ture. The linear elastic constitutive matrix of this model is described mathematically as a bounded random matrix. The
bounds reflect theoretical constraints consistent with the theory of elasticity. We first introduce a statistical characteri-
zation of an experimental database on morphology and crystallography of polycrystalline microstructures. The resulting
statistical model is used as a surrogate to further experimental data, required for calibration and validation. We then
recall the construction of a probabilistic model for the random matrix characterizing the apparent elasticity tensor of a
heterogeneous random medium. The calibration of this coarse scale probabilistic model using an experimental database
of microstructural measurements and utilizing the developed microstructural simulation tool is briefly discussed. Be-
fore using the model as a predictive tool in a system level simulation for the purpose of detection and prognosis, the
credibility of the model must be established through evaluating the degree of agreement between the predictions of the
model and the observations. As such, a procedure is presented to validate the probabilistic model from simulated data
resulting from subscale simulations. Suitable quantities of interest are introduced and predictive accuracy of the model
is studied by comparing probability density functions of response quantities of interest. The validation task is exercised
under both static and dynamic loading condition. The results indicate that the probabilistic model of mesoscale elastic-
ity tensor is adequate to predict the response quantity of interest in the elastostatic regime. The scatter in the model
predictions is found to be consistent with the fine scale response. In the case of elastodynamic, the model predicts the
mean behavior for lower frequency for which we have a quasistatic regime.

KEY WORDS: stochastic modeling, multiscale modeling, heterogeneous random media, model validation
and verification, polycrystalline microstructure

1. INTRODUCTION

Classical theories of material behavior that involve the concept of a homogenized continuum are often too idealized
to reflect the inherent complexities in the structure of many engineering materials such as composites, polycrystals,
granular materials, and concrete. Regardless of the differences in the nature of heterogeneities, these materials all
share a common characteristic which is the presence of an underlying microstructure. There is often complex vari-
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ability in the size, shape, and spatial configuration of microstructural constituents. Multiple physical processes, which
occur at the level of microstructure, typically govern the constitutive behavior and damage nucleation of materials.
The theory of random heterogeneous material has undergone a profound development over the past four decades
since the pioneering work of Hill [1], which subsequently led to the theories and techniques for computing bounds
for overall properties [2–7]. These theories rely on the concept of aneffective propertythat describes the relationship
between appropriate averages of mechanical fields. The effective properties are theoretically defined under certain
assumptions and conditions on the constitution of the material (see [4, 8] for instance). A fundamental prerequisite
on the validity of the effective properties is the existence of a representative volume element (RVE), i.e., a volume
element that is large enough compared to the average size of microscale constituents, and small enough with re-
spect to the macroscale dimensions for which the structural application is carried out. This condition is classically
referred to asseparation of scales. The overall properties, in this case, are assumed to exhibit a negligible level of
statistical fluctuation and the deterministic framework detailed in the classical literature can be suitable for model-
ing the heterogeneous medium. However, there are other classes of problems in which the characterization needs
to be carried out at a mesoscale, that is, a domain whose characteristic length is smaller than the RVE. A volume
element at this scale is referred to as a statistical volume elements (SVE), whose overall properties exhibit a con-
siderable amount of statistical fluctuations. Taking into account these fluctuations is of significant importance in
describing the scatter observed at the macroscale for some physical behavior of interest, e.g., fatigue life in metallic
structures, which is directly linked to the phenomena occurring at the scale of heterogeneity. Hence, a mechanistic
model should adequately accommodate the mesoscale fluctuations in order to be suitable for predicting such behavior.
For these classes of problems, the deterministic framework underlying the classical concept of effective properties is
inadequate. Nondeterministic approaches are thus required to take into account the scatter in the mechanical behav-
ior.

Over the past decade, the area of stochastic multiscale modeling has gained significant attention for analyzing
and predicting the behavior of complex material. The present work is motivated by two challenges in modeling and
simulating multiscale behavior. The first one is concerned with the construction of a sufficiently representative de-
scription of random media in terms of morphology and material properties, for an intended purpose. The construction
of this representation often requires a compromise such that it avoids redundant details while carrying as much rel-
evant information on fine scale features as needed for the analysis of the targeted physical phenomena. The second
important challenge arises in modeling the relationship between the random microheterogeneities and the parameters
or functions used to describe the physical processes of interest at the coarse scale. One of the essential questions in
this regard is whether the coarse scale description is capable of capturing the signature of fine scale characteristics.
The inherent heterogeneities in the nature of these fine scale features are reflected on coarse scale observables in the
form of random fluctuations around the average response. Hence, any multiscale mechanistic model must account
for these fluctuations in order to capture the effect of subscale heterogeneities. There are essential characteristics for
such a mechanistic model of material behavior that make it suitable to be used as a predictive tool. A model needs
to be adopted such that the state of the model is amenable to comparison to experimental observables and the model
behavior is sensitive to the subscale heterogeneities. Moreover, the scatter in the predictions of the model needs to be
consistent with the observed scatter.

The present paper aims at addressing the second characteristic identified above and is concerned with the validation
of a stochastic mechanistic model at the coarse scale. The model is established within the framework of the so-
called nonparametric approach for uncertainties [9, 10]. Making use of the maximum entropy (MaxEnt) principle,
a probabilistic model is identified to describe the mechanical system characterized by fourth-order elasticity tensor
that is constrained by a pair of physics-based bounds. The matrix representation of the fourth-order elasticity tensor
is modeled as a random matrix, exhibiting fluctuations that are connected to fine scale features through a calibration
process performed using a micromechanical framework. The details of the model construction are presented elsewhere
[11] and will be briefly reviewed in this article. Integrating such a description into a damage mechanics framework,
could be useful in capturing the signature of the microlevel defect that contributes in damage evolution and fatigue
cracks in metallic structures. Before using the model as a predictive tool in a system level simulation for the purpose
of detection and prognosis, however, the credibility of the model must be established through evaluating the degree of
agreement between the predictions of the model and the observations. This step constitutes the main goal of this article.
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The experimental calibration and validation of the model will require testing of a statistically meaningful number of
samples possessing statistically similar microstructures. Experimental samples, if available, are often not sufficient in
number due to the time constraint as well as the experimental cost and burden. As such, the first part of the paper is
devoted to developing an efficient experimentally based simulation tool for digitally generating statistical ensembles
of microstructures that are consistent with the available experimental data in a prescribed statistical sense. Such
simulations ensure a reasonable level of convergence in the process of identification of the probabilistic model of the
coarse scale material description. The resulting microstructures are also used to generate model-based measurements
in the validation stage.

This paper is organized as follows: In Section 2 we address the construction of a statistical model for charac-
terization and realization of two-dimensional (2D) polycrystalline microstructures from the available microstructural
measurements. The resulting statistical model is used as a surrogate to further experimental data, required for calibra-
tion and validation of a probabilistic model for the mesoscale behavior of material with microstructure. In Section 3
we recall the construction and identification of a probabilistic model for the mesoscale behavior of material with mi-
crostructure. The linear elastic constitutive matrix of this model is described mathematically as a random matrix that
is bounded, in a deterministic sense, from above and below. Finally, in Section 4, we present a validation procedure for
the predictive behavior of the probabilistic mesoscale model by comparing the scatter in the predictions of a response
quantity of interest with the observed scatter obtained from fine scale simulations. The validation task is exercised for
the elastostatic as well as the elastodynamic regime.

2. STATISTICAL MODEL FOR SIMULATION OF POLYCRYSTALLINE MICROSTRUCTURES

In this section we address the construction of a statistical model for characterization and realization of 2D polycrys-
talline microstructures. The model can be seen as a computational tool for digitally simulating random microstructures
in accordance with the available experimental data. This simulation tool will be employed in Section 3 to achieve a
reasonable level of convergence in the identification of the probabilistic for mesoscale material description. Such sim-
ulations will also be used in Section 4 to generate model-based measurements for the validation of the probabilistic
model.

2.1 Experimental Database

The data consist of microstructural-crystallographic measurements obtained from the electron backscatter diffraction
(EBSD) technique [12, 13]. These maps provide direct information about the crystalline structures and the crys-
tallographic orientations of the grains. The information obtained from EBSD maps can be used to study a variety
of microstructural features such as orientation mapping, morphology and texture, phase identification, grain bound-
ary, and defect. The processed data from this technique are also used to create the so-called orientation imaging
micrograph [12], which enables a visual representation of crystallographic orientations. In this work, we use the
measurements obtained from a rolled plate of aluminum alloy 2024-T351. Specimens were polished on a plane
containing the rolling direction as well as the plane perpendicular to the rolling direction. The polished specimens
were scanned using the EBSD technique and microstructural maps were obtained on each plane over the scanned
area. More details about the experimental analysis can be found in [14]. In this research, only the data relative to
the rolling plane are considered, which include three samples of approximately 12 mm×1.5 mm microstructures.
An experimental realization of the polycrystalline microstructure in the form of a microstructural map is shown in
Fig. 1, where the colors indicate different grains with different orientations. Each EBSD map contains information
on the geometry and the crystallography of approximately 4000 grains. On the basis of this information, in Sec-
tions 2.2 and 2.3 we construct a statistical model for characterization and simulation of 2D polycrystalline microstruc-
tures.

For characterization purposes, each grainGi is represented by an equivalent ellipseEi (the best ellipse fitting the
grains). Thus, the geometry of a grain is characterized by the equivalent aspect ratio of the ellipse semiaxes,β. The
crystallographic orientation of each grain is represented by a triplet of Euler angles [15],(θ1, θ2, θ3), characterizing
the relative orientation of the grain with respect to the polycrystal coordinate system. The marginal probability density
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FIG. 1: Microstructural map of a samples of Al 2024-T351 obtained from the EBSD technique.

functions of the Euler angles and the equivalent aspect ratio, as estimated from experimental measurements, are
plotted in Fig. 2 and 3, respectively. The anglesθ1 andθ3 are, roughly speaking, uniformly distributed over[0, 2π],
while θ2 has a slightly bimodal distribution supported over[0, π/2]. The distribution of the aspect ratio also has a
slightly bimodal behavior where most of the realizations are significantly different from one. This implies that most
of the grains are elongated. Furthermore, the statistics of major axis orientation of the fitting ellipses, also available
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FIG. 2: Plot of the marginal probability density functions of Euler angles.
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FIG. 3: Plot of the probability density function ofβ.
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from EBSD data, implies that the grains are almost all elongated along the so-called rolling direction (the horizontal
direction in Fig. 1).

2.2 Random Geometry

The first step in digitally generating a 2D microstructure in accordance with the experimental data involves the simu-
lation of the random geometry. The Voronoi tessellation technique [16, 17] has been widely used in the mechanics and
physics of random media as a simple model for a variety of material microstructures. It is particularly considered as
a common model for a two-dimensional representation of polycrystalline microstructures in metallic alloys [18, 19].
For the polycrystalline materials, the tessellation is typically generated from a homogeneous Poisson process and is
referred to as a Poisson Voronoi tessellation. The classical Voronoi tessellation is defined with respect to the Euclidean
distance. The resulting partitioning technique is not capable of generating a microstructure with grains elongated in
a given direction. However, as mentioned in Section 2.1, most of the grains in the type of alloy considered in this
research are elongated along the rolling direction. This difficulty is resolved by making use of the so-called Voronoi-
G tessellation introduced by Scheike [20] and briefly reviewed in this section. The Voronoi-G tessellation technique
essentially relies on allowing the anisotropic growth of the Voronoi cells by replacing the Euclidean distance in the
definition of classical Voronoi tessellation with a more general form. The resulting representation has a parameter for
each dimension which controls the elongation of the cells in the desired direction. LetD be a bounded open set in
d-dimensional Euclidean space,Rd. Let {x(i)

tes}NG
i=1 be the set of generating points belonging to the closure ofD. In

the classical Voronoi tessellation, the cellV(x(i)
tes) generated byx(i)

tes is the set of all the points ofD that are closer to
x(i)

tes than any other generating point, the closeness being defined with respect to the Euclidean distance inRd. As a
consequence, the collection of all Voronoi cells{V(x(i)

tes)}NG
i=1 partitions the space into disjoint space-filling regions.

The set of closed convex polytopes obtained in this manner is then referred to as Voronoi tessellation (also known as
Dirichlet tessellation or Dirichlet mosaics). A simple and efficient algorithm for generating the Voronoi tessellation
of a set of points on a plane is presented in [21]. MATLAB users may find the functionsvoronoi andvoronoin
useful for simulation of 2D Voronoi tessellations. For(x, x’) ∈ Rd × Rd, let (x, x’) 7→ dG(x, x’) be a generalized
distance defined by

dG(x, x’) =
√

(x− x’)T [G] (x− x’), (1)

where superscriptT represents the transpose operator and[G] is a positive-definite symmetric matrix. The cell
VG(x(i)

tes) of the Voronoi-G tessellation, generated by pointx(i)
tes, is then defined as

V(x(i)
tes)

def= {x ∈ D | dG(x(i)
tes, x) ≤ dG(x(i)

tes, x(j)
tes)}, (2)

in which j = 1, ..., NG , j 6= i. From the definition of distance in Eq. (1), it is obvious that by setting[G] = [Id],
[Id] being the identity matrix, one can recover the classical Voronoi tessellation. It can be shown [20] that generating
elongated cells in the horizontal direction can be performed by letting[G] take the following form:

[G] =
[
(1/s)2 0

0 1

]
, (3)

in which s ∈ R+
∗ ⊂ R+ is a positive real quantity. The parameters characterizes the rate of growth of the cell in the

horizontal direction and as such(1/s) may be seen as the overall aspect ratio. Thus, having this parameter identified
from the experimental distribution, one can digitally generate microstructures in which the equivalent aspect ratios of
the grains are statistically consistent with the available data. Note that this technique does not allow control over the
scaling of individual cells in the tessellation and as such may introduce a modeling bias in the numerical simulation.
Here, we use the minimum relative entropy method to obtain an estimateŝ of s such that

ŝ = arg min
s∈R+

DKL [p̂β(β) ‖ pβ(β|s)] , (4)
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wherex 7→ p̂β(x) andx 7→ pβ(x |s) are probability density functions of aspect ratio estimated, respectively, from
experimental realizations (Fig. 3) and from the Monte Carlo simulation of the Voronoi-G microstructures for a given
value ofs andDKL(· ‖ ·) denotes the relative entropy (also known as Kullback-Leibler divergence) [22, 23], which
is a positive-valued nonsymmetric distancelike measure of the difference between two probability distributions and is
defined as

DKL [p̂β(β) ‖ pβ(β|s)] =
∫

R+
p̂β(β) log

p̂β(β)
pβ(β|s)dβ. (5)

The plot of the relative entropy as a function ofs, shown in Fig. 4, indicates that the minimum is achieved forŝ = 2.0.
The procedure for generating the elongated microstructure using the Voronoi-G tessellation technique is presented

below [20]. Figure 5 shows two digitally simulated microstructures obtained from the same underlying Poisson point
process before and after elongation.
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FIG. 4: Plot of the relative entropy functions 7→ DKL[p̂β(β) ‖ pβ(β|s)].
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FIG. 5: Example of digitally simulated microstructure, without (left) and with (right) elongation.
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Algorithm 1 : Construction of the Voronoi-G tessellation.

[Q] ← [G] = [Q]T [Q];1

populate the generating pointsx(i)
tes ∈ D, i = 1, . . . , NG ;2

for i ← 1, NG do3

x̃ ← [Q]x(i)
tes;4

compute the cellV(x̃(i)
tes) generated bỹx(i)

tes;5

forall y ∈ V(x̃(i)
tes) do6

˜̃y ← [Q]−1y;7

end8

define the Voronoi-G tessellationy ∈ VG(x̂(i)
tes) ← ˜̃y9

end10

2.3 Random Crystallographic Orientation

The next step in developing the statistical model of material microstructure is concerned with the characterization
of random material properties from the available experimental data. In a polycrystalline microstructure, the elastic
material properties are fully defined by prescribing single crystal elastic constants and a set of Euler angle triplets
representing the crystallographic orientations of the grains with respect to the polycrystal reference frame. Since the
elastic properties of a single grain are generally anisotropic, mismatches in the orientations of the grains lead to a
changing set of elastic properties that is the major source of heterogeneity in the properties of polycrystalline materi-
als. The language and methods of stochastic field theory, being capable of describing the spatial variation of complex
patterns, seem to be a natural approach for the probabilistic representation of crystallographic orientation. As such, the
present section addresses the construction of a random field model for spatially varying vector-valued Euler angles.
The plot of estimated marginal probability densities in Fig. 2 clearly shows the non-Gaussian characteristics of random
Euler angles. The characterization and simulation of non-Gaussian random processes have been extensively studied
over the past few decades [24–28] and is still an area of active research. Since the higher order finite-dimensional
distributions are often unavailable in practice, many existing simulation algorithms are based on matching prescribed
marginal probability distribution functions and covariance function. A wide range of simulation approaches rely on
the class of the so-calledtranslation processespioneered by Grigoriu [29, 30]. A translation process is essentially
a non-Gaussian random process that can be represented by a memoryless transformation of an underlying Gaussian
process. By postulating a translation form for the desired non-Gaussian process, a simulation can be performed by
first generating a standard Gaussian process with an appropriate target covariance function, and then applying a mem-
oryless transformation based on the prescribed marginal cumulative distribution functions (CDF). In general, it is not
always guaranteed to find a translation form for any given choice of covariance function and non-Gaussian marginal
distributions. From a theoretical point of view, the covariance function and the marginal distribution must satisfy cer-
tain compatibility conditions to ensure the existence of an associated translation process [25, 31]. Arwade and Grigoriu
[19] modeled the Euler angles random field as a vector-valued translation field with prescribed marginal distributions
and usual moment-product correlation function. In this case the moment-product correlation (also covariance) of the
underlying standard Gaussian field is related to that of the non-Gaussian field implicitly in the form of an integral
equation. The solution typically requires an iterative procedure and the integrals need to be evaluated numerically.

In this paper we circumvent the difficulties noted above by making use of the fractile correlation [32] instead
of the usual moment-product correlation. The fractile correlation function, obtained from empirical observations,
can be analytically related to the product-moment correlation of a Gaussian process. Given this correlation function,
a Gaussian process can then be simulated and transformed using a CDF mapping to satisfy prescribed marginal
distribution functions. In the following, we present the construction of such a correlation structure for the Euler angles
random field from the available experimental measurements. We also present the simulation algorithm to generate the
samples of the resulting random field.
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2.3.1 Derivation of Random Field Model for Euler Angles

Let (x,γ) 7→ Θ(x,γ) = [θ1(x,γ), θ2(x,γ),θ3(x, γ)] be theR3-valued random field defined on a probability space
(Γ , F , P ), indexed by a bounded domainD in Rd (d being an integer,1 ≤ d ≤ 3), corresponding to the Euler angle
representation of the crystallographic orientation field for a polycrystalline microstructure. For notational simplicity,
hereafter the argumentγ will be dropped unless needed for clarity. The spatial variation of the orientation field in
second moment is characterized by a second-order tensor-valued covariance function(x, x′) 7→ [ΣΘ(x, x′)] defined
for all (x, x′) in Rd × Rd by

[ΣΘ(x, x′)] = E{[Θ(x)−Θ(x)]⊗ [Θ(x′)−Θ(x′)]}, (6)

whereE{·} is the mathematical expectation, the symbol⊗ is the tensor (or dyadic) product, and the underline denotes
the mean value. Let us assume that the marginal distribution functions ofΘ(x) are invariant under translations. De-
noting the associated marginal CDF asFi, i = 1, 2, 3, we introduce a newR3-valued random fieldx 7→ U(x) such
that its components,ui, are given by

um(x) = Fm[θm(x)], m = 1, 2, 3. (7)

The second-order tensor-valued fractile correlation function ofΘ(x), (x, x′) 7→ [R(x, x′)] then reads

[R(x, x′)]mn=
E{[um(x)− um(x)][un(x′)− un(x′)]}√

E{[um(x)− um(x)]2}E{[un(x′)− un(x′)]2}
= 12E{um(x)un(x′)} − 3.

(8)

It is readily deduced from the definition that the fractile correlation is invariant with respect to monotonic transfor-
mations. Let us assume that a translation form for the random fieldΘ(x) exists, that isΘ(x) can be written as a
transformation of a Gaussian field as follows:

θm(x) = F−1
m

(
Φ[ζm(x)]

)
, m = 1, 2, 3, (9)

whereζm(x) is the zero-mean unit-variance component of anR3-valued Gaussian random fieldx 7→ Z(x) =
[ζ1(x), ζ2(x), ζ3(x)] andΦ is the CDF of a standard Gaussian variate. Applying the monotonic transformation of
the form given by Eq. (7) to the both sides of Eq. (9) reads

Fm[θi(x)] = Φ[ζm(x)] = um(x), m = 1, 2, 3, (10)

which implies that the fractile correlations of the translation fieldΘ(x) and its underlying Gaussian are matching. The
moment-product correlation function (also covariance function) of the standard Gaussian field can be obtained from
its fractile correlation using the following simple relationship, originally proposed by Pearson in 1904 for the case of
random variables (see [33]):

[Σ(x, x′)]Zmn = 2 sin
(π

6
[R(x, x′)]mn

)
, m, n = 1, 2, 3. (11)

Note that Eq. (11) results in a valid covariance function only if it is non-negative definite. Once a valid covariance func-
tion is in hand, the simulation of Euler angles random field can be done by first generating the samples of underlying
zero-mean Gaussian fieldZ(x) with a prescribed covariance function[Σ(x, x′)]Z , and then applying the transforma-
tion given by Eq. (9). Representing the random fieldZ(x) in terms of its Karhunen-Loeve decomposition [34, 35]
reads

Z(x, γ) =
∞∑

k=1

√
λkΨk(x)ξk(γ), (12)
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where{ξk(γ)} is a set of uncorrelated standard Gaussian random variables,λk andΨk(x) are deterministic quantities
representing, respectively, the eigenvalue andR3-valued eigenfunction of the covariance function[Σ(x, x’)]Z such
that its spectral decomposition reads

[Σ(x, x′)]Z =
∞∑

k=1

λkΨk(x)⊗Ψk(x’). (13)

In practice the Karhunen-Loeve expansion is truncated after a finite number of terms,M , leading to

Z̃(x, γ) =
M∑

k=1

√
λkΨk(x)ξk(γ). (14)

The covariance function associated with the truncated series then reads

[Σ(x, x′)]Z̃ =
M∑

k=1

λkΨk(x)⊗Ψk(x’). (15)

Once a realization of the Gaussian random field is generated from Eq. (14), the corresponding realization of the Euler
angle field is obtained using the transformation given by Eq. (9).

2.3.2 Estimation of Correlation Structure

This section is concerned with the estimation of the correlation structure from the available experimental measure-
ments of Euler angle triplets. LetDexp ⊂ R2 be the experimental domain of the microstructure for which the EBSD

data were collected. Let{x(g)
exp}Nexp

g=1 ∈ Dexp be the set of points at which the crystallographic measurements were

taken and(ϑ̂g
1, ϑ̂

g
2, ϑ̂

g
3) denotes the corresponding measurements of the vector of Euler angles. Let each grain be ap-

proximated by an equivalent ellipseEg within which the Euler angles are considered to be constant. The information
on equivalent ellipses is directly available from the output of the EBSD technique. The experimental field of Euler
angles can be approximately represented as

ϑ̃m(x) =
Nexp∑
g=1

ϑ̂(g)
m I(g)(x), m = 1, 2, 3, (16)

whereI(g)(x) : Rd 7→ {0, 1} denotes the indicator function associated withEg, that is

I(g)(x) =

{
1, if x ∈ Eg,

0, otherwise.
(17)

The corresponding fractiles can be expressed as

ũm(x) =
Nexp∑
g=1

û(g)
m I(g)(x), m = 1, 2, 3, (18)

in which, according to Eq. (7),̂u(g)
m is given by

û(g)
m = F̃m(ϑ̂g

m), (19)

whereF̃m is the marginal CDF of Euler angles estimated from the available measurement.
For the sake of simplicity in estimation of correlation functions, we assume that the Euler angle random field is

weakly homogeneous and isotropic, that is the second-order moment is invariant under any translation and rotation in
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Rd. Thus, the correlation function depends on only the distanceη = ‖x − x′‖ of two spatial points(x, x′). Making
use of Eq. (8), an estimate of the fractile correlation function can be obtained as

[R̃(η)]mn =
12

Nk ×Nl

Nk∑

k=1

Nl∑

l=1

ũm

(
x(k)

exp

)
ũn

(
x(k)

exp + ηn̂l

)
− 3, (20)

where{n̂l}Nl

l=1 is a finite set of distinct unit vectors andNk is the number of measurement pointsx(k)
exp for which

x(k)
exp + ηn̂l ∈ Dexp for all l = 1, . . . , Nl. Obviously, as the numberNl of unit vectors considered in the simulation

increases, the accuracy in the estimation of the correlation function will increase. The plots of estimated fractile auto-
and cross-correlation functions are shown in Fig. 6. It is seen that, roughly speaking, the second Euler angleθ2 is
not correlated with the other two. Also, comparing the correlation range with the average grain size indicates a short-
range correlation among the neighboring grains. This suggests that for the particular material samples under study
the Euler angles can be adequately modeled as spatially uncorrelated random vector. A similar observation has been
reported by Arwade and Grigoriu [19] for aluminum alloy; however, they stated that other studies have indicated
the possibility of encountering long-range correlation in orientation in aluminum polycrystals. As such, the general
framework presented in this section for constructing a random field model for Euler angles is useful since it can
incorporates the possible spatial correlation in the crystallographic orientation of the grains.

The plots of estimated fractile correlation functions, Fig. 6, suggest that an exponential form can be a suit-
able model for the fractile correlation of the Euler angles field. We postulate a correlation structure of the form
amn exp(−η/lmn), where the parametersamn andlmn are identified by fitting the exponential form to the estimated
correlation functions. The plots of the best exponential fits to the estimated fractile correlations are shown in Fig. 7.
The identified values ofamn andlmn for each case are reported on the plots. The exponential correlation function can
be used for simulation of the Euler angle random field by setting[R(η)]mn = amn exp(−η/lmn) in Eq. (11), where
(x, x′) is replaced byη.

2.3.3 Numerical Simulation of the Euler Angle Random Field

Let us consider the domainD ⊂ R2 of a Voronoi-G polycrystal generated using the procedure in Section 2.2. Let
{ci}NG

i=1 ∈ D, i = 1, . . . , NG be the set of geometric centroids of the grains{Gi}NG
i=1 in the generated polycrystal.

Making use of the notation introduced in the previous section, the components of the orientation fieldx 7→ Θ(x) =
[θ1(x),θ2(x), θ3(x)] for the digitally generated microstructure can be represented as follows:
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FIG. 6: The fractile auto- (left) and cross- (right) correlation functions as estimated from experimental data.
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FIG. 7: Best exponential fits to the estimated fractile correlation functions.

θm(x) =
NG∑

i=1

θ̂(i)
m I(i)(x), m = 1, 2, 3, (21)

whereθ̂(i)
m is the componentm of the triplet of Euler angles corresponding to the grainGi. Hence, the simulation of the

orientation field will rely on generating the sample of Euler angle triplet at each center pointci. For implementation
purposes, we introduce a vector-valued random variableΘ̂ = (Θ̂1, . . . , Θ̂3NG ), the components of which are defined
in the following fashion:

Θ̂(i−1)×3+m = θ̂(i)
m i = 1, . . . , NG , m = 1, 2, 3. (22)

The second moment properties ofΘ̂ are characterized by a3NG×3NG fractile correlation matrix[R̂] = [[R]ij ] where
the submatrix[R]ij is obtained making using of the correlation structure identified in Section 2.3.2 in the following
manner:

[R]ijmn = amn exp(−‖ci − cj‖/lmn), i, j = 1, . . . , NG , m, n = 1, 2, 3. (23)

From the constructed fractile correlation matrix[R̂], one can readily obtain the corresponding covariance matrix
of the underlying Gaussian image using Eq. (6). The samples of Euler angles for each grain are then generated
by employing the Karhunen-Loeve expansion technique and making use of the transformation given by Eq. (9), as
described in Section 2.3.1. The numerical procedure for simulating the orientation field, given the geometry of a
Voronoi-G polycrystal, is presented below.

Once an Euler angle tripletΘg = (θg
1, θ

g
2, θ

g
3) is simulated for a graing, the corresponding elasticity tensorCg

of the grain in the polycrystal reference frame can be readily computed form the single crystal elasticity tensorC(cr)
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Algorithm 2 : Simulation of the orientation field.

compute the set of grain centroids{ci}NG
i=1;1

for i ← 1, NG do2

for j ← i,NG do3

[R̂] = [[R]ijmn] ← amn exp(−‖ci − cj‖/lmn), m, n = 1, 2, 3;4

end5

end6

[Σ]ẐIJ ← 2 sin((π/6)[R̂]IJ ), I, J = 1, . . . , 3NG ;7

compute the eigenvalues{λ̂k}3NG
k=1 and eigenvectors{Ψ̂k}3NG

k=1 of [Σ]Ẑ ;8

generate a set of statiscally independent standard Gaussian random variables{ξk}NG
k=1;9

Ẑ = (ζ̂1, . . . , ζ̂3NG ) ← ∑3NG
k=1 λ̂kΨ̂kξk;10

for m ← 1, 3 do11

for i ← 1, NG do12

θ̂
(i)
m ← F−1

m

(
Φ(ζ̂(i−1)×3+m)

)
;13

end14

θm(x) ← ∑NG
i=1 θ̂

(i)
m I(i)(x);15

end16

Θ(x) ← [θ1(x),θ2(x),θ3(x)];17

using the following tensorial transformation:

Cg
i′j′k′l′ = [R(Θg)]i′i[R(Θg)]j′j [R(Θg)]k′k[R(Θg)]l′lC(cr)

ijkl, (24)

where the transformation matrix[R(Θ)] is given by

[R(Θ)] =




cosθ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1







1 0 0
0 cos θ2 − sin θ2

0 sin θ2 cosθ2







cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1


 . (25)

In the case of aluminum, the single crystal has a cubic crystalline structure whereC(cr) takes the following form:

C(cr) =




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44




, (26)

in which the single crystal elastic constants of aluminum are given byc11 = 108, c12 = 61.3 andc44 = 28.5, where
the units are in gigapascals.

3. PROBABILISTIC MODEL FOR MESOSCALE ELASTICITY TENSOR

In this section we recall the construction of a probabilistic model for the mesoscale elastic behavior of materials with
microstructures. The linear elastic constitutive matrix of this model is described mathematically as a bounded matrix-
valued random variable. The probability model is established within the framework of the so-callednonparametric
approach for uncertaintiespioneered by Soize [9, 10, 36]. Having recourse to the MaxEnt principle and making
use of the random matrix theory, this approach allows one to construct a probability measure of the random system
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matrices without explicitly considering random parameters that could describe the mechanical behavior of the system
or characterize the morphological features of the material. Based on this framework, Soize [37] introduced a class
of positive-definite matrix-valued random field to model the three-dimensional linear elasticity tensor of a random,
nonhomogeneous anisotropic material. The resulting probability model is characterized by a matrix-valued mean
function and a set of scalar parameters controlling the spatial correlation lengths and the level of statistical fluctuations.
Such a parametrization may facilitate experimental identification using an inverse problem scheme. This probability
model was extended later [38] to construct a mesoscale probabilistic description of anisotropic heterogeneous material
with microstructure. Within this framework, a model was derived [39] for bounded random matrices that are symmetric
and positive-definite. The bounds are defined based on the concept of energy-based constraints on elasticity tensors
introduced by Huet [8]. The resulting probability model can be useful to characterize the continuum elasticity matrix
associated with the overall properties of heterogeneous materials that are bounded from below and above. These
bounds are consistent with the theory of elasticity and implicitly reflect the variability in the material heterogeneity.
A different formulation is recently proposed [11] to account for the boundedness constraints. The proposed approach
invokes the class of random field previously introduced by Soize [38] and facilitates the extension of bounded random
system matrices to the case of random fields. In this work we make use of this alternative formulation to model the
mesoscale linear elastic constitutive matrix of a polycrystalline material as a bounded random matrix. The construction
of the model is briefly reviewed in the present section.

3.1 Micromechanics-Based Bounds for the Mesoscale Properties of Linear Elastic Microstructure

We consider the domain of a random heterogeneous mediumD ∈ R3 with boundary∂D. The effective elasticity
matrix [Ceff] is obtained using the classical concept of RVE [2]. However, our special interest in this work is focused
on the case whereD is smaller than the RVE. The volume elementD is thus a statistical volume element. Following
the terminology introduced by Huet [8], the overall mechanical properties of a material in this scale are referred
to asapparent propertiesand are random in nature. The relation between the effective and apparent properties was
first examined by Huet by introducing the so-called partition theorem [8]. As the result, the inequalities between the
effective and apparent elasticity tensors were established and the procedure to obtain the hierarchies of mesoscale
bounds for the elastic properties was presented (see also [18] for a general review). The partition theorem essentially
states that the effective properties of heterogeneous elastic bodies are bounded from below and above by the apparent
properties obtained from applying two essential forms of boundary conditions to the any set of uniform partition of
the associated RVE. The first case of the boundary condition is referred to as kinematic uniform boundary condition
(KUBC) and corresponds to a prescribed displacement fieldv(x) applied to the boundary∂D in the following form:

v(x) = ε0x, ∀ x ∈ ∂D. (27)

In Eq. (27),ε0 is the vector representation of a given symmetric second-order strain tensor. The associated kinematic
apparent elasticity tensor[Capp

ε ] is defined such that

〈σ〉 = [Capp
ε ]〈ε〉 = [Capp

ε ]ε0, (28)

where〈·〉 represents the volume average overD, that is,

〈σ〉 =
1
|D|

∫

D
σ(x)dx (29)

〈ε〉 =
1
|D|

∫

D
ε(x)dx. (30)

The second case of boundary condition is referred to as the static uniform boundary condition (SUBC) and corresponds
to a prescribed traction vector field of the form

t(x) = σ0n(x), ∀ x ∈ ∂D, (31)
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whereσ0 is the vector representation of a given symmetric second-order stress tensor andn(x) is the unit vector
normal to∂D at x. In this case, one can define the static apparent compliance tensor[Sapp

σ ] , analogous to Eq. (28),
such that

〈ε〉 = [Sapp
σ ]〈σ〉 = [Sapp

σ ]σ0. (32)

Thus, the associated static apparent elasticity tensor,[Capp
σ ], reads

[Capp
σ ] = [Sapp

σ ]−1. (33)

Now let us consider the set ofn uniform partitions ofD that is equal to or larger than the RVE. Let us denote these
partitions asVi, i = 1, . . . , n. Applying KUBC and SUBC to each subdomainVi yields a different pair of realizations
of the kinematic and static apparent modulus matrices denoted as[Capp

σ (Vi)] and[Sapp
σ (Vi)], respectively. Based on the

partition theorem, the effective elastic matrix is bounded from below and above with the statistical average of these
matrices, that is

[Ĉ
app

σ ] ≤ [Ceff] ≤ [Ĉ
app

ε ], (34)

where

[Ĉ
app

σ ] =

{
1
n

n∑

i=1

[Sapp
σ (Vi)]

}−1

, (35)

[Ĉ
app

ε ] =
1
n

n∑

i=1

[Capp
ε (Vi)]. (36)

For the domain smaller than the RVE, invoking the partition theorem leads to hierarchical inequalities among the
apparent tensor at various mesoscales [8]. For any given realization of the SVE, it can be shown that

[Ĉ
app

σ ] ≤ [Capp
σ ] ≤ [Capp

m ] ≤ [Capp
ε ] ≤ [Ĉ

app

ε ], (37)

where[Capp
m ] are the apparent elastic properties resulting from applying the so-called mixed boundary condition (MBC)

on the volume element and, as such, are referred to as mixed apparent elasticity tensor. A special form of MBC
is known as orthogonal uniform mixed boundary conditions [40]. This form includes the case of uniform uniaxial
tension, which is of particular importance from an experimental point of view.

3.2 Overview of Model Construction

LetMs
n be the set of all the(n × n) real symmetric matrices andM+

n ⊂ Ms
n denotes the set of symmetric positive-

definite matrices. Let[C] ∈ M+
n be the matrix representation of the fourth-order random apparent elasticity tensor of

D. Invoking the principles of minimum complementary energy and minimum potential energy, one can obtain two
deterministic matrices[Cl] ∈M+

n and[Cu] ∈M+
n such that the following inequalities hold almost surely:

[0] < [Cl] < [C] < [Cu], (38)

where[0] is the zero matrix. Note that the above inequalities are inferred in the positive-definite sense, i.e.,[X] > [Y ]
implies that[X] − [Y ] is a positive-definite matrix. LetΩ be the set of all then × n real symmetric positive-definite
matrices for which the inequalities (38) hold in the strict sense, that isΩ = {[C] ∈ M+

n (R)|[Cl] < [C] < [Cu]}. We
denote the probability space on whichΩ is defined by(Ω, T ,P), whereT is theσ-algebra of subsets ofΩ andP
represents the probability measure onT . Let us assume thatP admits a probability density function[C] 7→ p[C]([C])
from Ω into R+ =]0,∞[. The probability distribution of[C] is then defined byP[C] = p[C]([C])dC, in which the
measuredC onMs

n(R) is given by

dC = 2n(n−1)/4
∏

1≤i≤j≤n

d[C]ij , (39)

whered[C]ij is the Lebesgue measure onR [9].
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The generalization of the measure of entropy, introduced initially by Shanon [41] for discrete probability distribu-
tions, to the case of probability density functionp reads

S(p) = −
∫

M+
n (R)

p([X]) ln(p([X]))dX. (40)

An estimation ofp[C] can be classically obtained having recourse to the maximum entropy (MaxEnt) principle pre-
sented by Jaynes [42, 43] in the case of random vectors. The MaxEnt principle consists of maximizing the measure
of information entropyS(p) under a set of constraints encompassing the available information. Using this principle,
one can explicitly construct a probabilistic model using the available information and avoiding any bias on the esti-
mation of the probability distribution due to the use of any additional information. Thus, the general expression for
the construction of the probability density functionp[C] using the MaxEnt principle is stated as

p[C] = arg
p∈Pad

maxS(p), (41)

wherePad denotes the set of all the admissible probability density functions, with supportΩ, fulfilling all the con-
straints associated with the available information. The choice of uniform measure in the MaxEnt principle as stated and
used in this paper is merely arbitrary. In other words, we presume, without justification, that our state of indifference is
described by a uniform measure. A study of this point in connection with multiscale simulation and experimentation
capabilities would be of great interest, but falls outside the realm of this paper.

Based on the general framework explained above, two probabilistic models for deterministically bounded positive-
definite matrix-valued random variable were recently derived [11, 39]. The major difference in the construction of
these two models is in the way that the boundedness constraint is introduced. In the probabilistic model derived in
[39] the constrains associated with the lower and upper bounds are directly enforced on the random matrix[C]. The
final form of the probability density function[C] 7→ p[C]([C]) is explicitly constructed. In this case the probability
density function takes the form of a generalized matrix variate Kummer-Beta distribution [44]. Alternatively, the
boundedness constraints can be implicitly implemented through a suitable transformation on[C] [11]. We use this
formulation, which relies on introducing the shifted inverse random matrix[N] defined by

[N] = ([C]− [Cl])−1 − ([Cu]− [Cl])−1. (42)

The condition of([C] − [Cl])−1 ∈ M+
n , respectively,([Cu] − [C])−1 ∈ M+

n , is readily deduced from the symmetric
positive-definiteness of the random matrix[C] − [Cl], respectively,[Cu] − [C]. Consequently,[N] is also symmetric
positive-definite, that is,[N] ∈M+

n (R). Let us assume that the matrix-valued random variable[N] admits a probability
density function[N ] 7→ p[N]([N ]) defined onM+

n . Using the MaxEnt principle,p[N] can be constructed by solving the
following optimization problem:

minimize [−S(p[N])]
subject to

(43)

∫

M+
n (R)

p[N]([N ])dN = 1, (44)

∫

M+
n (R)

[N ]p[N]([N ])dN = [N ] ∈M+
n (R), (45)

∫

M+
n (R)

ln {det([N ])} p[N]([N ])dN = cN , |cN | < +∞, (46)

It is readily seen that[N] belongs to the class of positive-definite matrix-valued random variable presented in [9]. The
constraint in Eqs. (45) and (46) define the available information. The constraint in Eq. (45) implies that the mean value
of [N] is given by theM+

n -valued matrix[N ], while Eq. (46) ensures the existence of the moments associated with
the inverse random matrix[N]−1 (see [9] for the proof). The above optimization problem is classically solved by the
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method of Lagrange multipliers. Letλ0 ∈ R, [Λ[N]] ∈M+
n (R) andλ ∈ R be the Lagrange multipliers associated with

Eqs. (44), (45), and (46), respectively. The resulting probability density function[N ] 7→ p[N]([N ]) takes the form [9]

p[N] = IM+
n (R)([N ])c0 det([N ])λ−1etr{−[Λ[N]][N ]}, (47)

where etr{[X]} = exp{tr([X])}, c0 = exp(−λ0 − 1) and[X] 7→ IM+
n (R)([X]) is the indicator function for the set

M+
n (R), that is,IM+

n (R)([X]) is equal to 1 if[X] ∈M+
n (R) and 0 otherwise. For positive integer values ofλ, Eq. (47)

corresponds to the probability density function of a Wishart distribution [44]. Letδ[N] denote the dispersion parameter
that controls the level of statistical fluctuation of the random matrix[N] defined as

δ[N] =
{

E{‖[N]− [N ]‖2F }
‖[N ]‖2F

}1/2

, (48)

where‖[X]‖F = (tr{[X][X]∗})(1/2) is the Frobenius norm. It has been shown that the quantitiesδ[N], λ and[Λ[N]]
are related through the following relationships [9]:

δ[N] =
{

1
n− 1 + 2λ

(
1 +

(tr[N ])2

tr([N ]2)

)}1/2

, (49)

[Λ[N]] =
n− 1 + 2λ

2
[N ]−1. (50)

The generation of realizations of random matrix[N] with respect to Eq. (47) involves sampling from Gaussian and
gamma univariate distributions. A numerical algorithm is proposed in [9] for this purpose and shall not be repeated
here for the sake of brevity. Once the samples of[N] are generated, the corresponding realizations of the random
matrix [C] is readily obtained from Eq. (42).

3.3 Calibration of the Probabilistic Model

This section is concerned with the calibration of the probabilistic model for random matrix[N] introduced in Sec-
tion 3.2. The calibration task involves identification of the mean matrix[N ] and the dispersion parameterδ[N] for a
given mesoscopic domain of heterogeneous material. To that end, first the realizations of the apparent elasticity ma-
trix [C] as well as the lower bound[Cl] and upper bounds[Cu] need to be computed. These quantities will in turn be
used in Eq. (42) to compute the realizations of random matrix[N] from which [N ] andδ[N] will be estimated. The
details of numerical procedure for computing the realizations of the apparent tensors are presented elsewhere (see [11,
Section 4.3.1]) and will not be detailed here for the sake of brevity. This procedure can be summarized as follows:

Step 0: Generate a realization of the 2D polycrystalline microstructure.

Step 1: Compute the realizations of[Ĉ
app

ε ] and[Ĉ
app

σ ] by invoking the Huet’s partition theorem [Eqs. (29) and (30)].

Step 2: Compute the realizations of[Capp
ε ] and[Capp

σ ] by applying KUBC and SUBC, respectively.

Step 3: Compute the realization of the apparent elasticity matrix[Capp
m ] by applying MBC (tension test for instance)

and solving the following optimization problem:

[Capp
m ] = arg

[Cl]<[C]<[Cu]

min ‖〈σ〉MBC − [C]〈ε〉MBC‖. (51)

The calculation of the apparent elasticity matrix in step 3 requires the estimation of an appropriate pair of deter-
ministic bounds[Cl] and[Cu] extracted from the stochastic ones[Capp

σ ] and[Capp
ε ]. We use the deterministic bounds

proposed in [11, 45] where[Cl] and[Cu] are defined as

[Cl] = arg
[C]∈Cl

min
Nsim∑

k=1

‖[Capp
σ (ωk)]− [C]‖F , (52)
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[Cu] = arg
[C]∈Cu

min
Nsim∑

k=1

‖[C]− [Capp
ε (ωk)]‖F , (53)

in which the argumentωk, k = 1, ..., Nsim indexes the random realizations and the setsCl andCu are defined as

Cl = {[C] ∈M+
n (R) | [C] < [Capp

σ (ωk)], k = 1, . . . , Nsim}, (54)

Cu = {[C] ∈M+
n (R) | [Capp

ε (ωk)] < [C], k = 1, . . . , Nsim}. (55)

For the purpose of calibration, we considerNsim = 100 realizations of 0.3 mm×0.3 mm domain of microstructure
of aluminum polycrystal generated using the procedure detailed in Section 2. Following the aforementioned procedure,
the estimates of the lower and upper bounds are found to be

[C̃l] = 105




1.0869 0.6068 0.0007
0.6068 1.0884 0.0007
0.0007 0.0007 0.2347


 , (56)

[C̃u] = 105




1.1487 0.5787 0.0013
0.5787 1.1477 −0.0003
0.0013 −0.0003 0.2825


 , (57)

where the units are in megapascals. These estimated bounds, along with the realizations of the apparent elasticity
tensor[Capp], obtained from Eq. (51), allow the corresponding realizations[N(ω1)], ..., [N(ωNsim)] of [N] to be
computed from Eq. (42). Finally, estimates of parameters[N ] and δN of the probabilistic model, can be readily
determined as follows:

[Ñ ] =
1

Nsim

Nsim∑

k=1

[N(ωk)], (58)

δ̃N =

{
1

Nsim‖[Ñ ]‖2F

Nsim∑

k=1

‖[N(ωk)]− [Ñ ]‖2F
}1/2

. (59)

These parameters are found to be
δ̃N = 0.66, (60)

and

[Ñ ] = 10−3




0.2667 0.0879 −0.0189
0.0879 0.2214 0.0277
−0.0189 0.0277 0.2366


 . (61)

Making use of the above parameters, the numerical Monte Carlo simulations are performed to sample the real-
izations of the random matrix[N] and subsequently the corresponding realizations of[C] can be readily computed.
From the simulated realizations of[C], the dispersion parameter is estimated to beδ̃sim

[C] = 0.009. This small amount
of statistical fluctuations can be related to weak anisotropy of aluminum single crystal [11].

4. VALIDATION

In Section 2 we presented the construction of a statistical model for characterization and realization of 2D polycrystals
from the microstructural measurements extracted from EBSD maps. The resulting realizations of the microstructures
were used in Section 3 to achieve a reasonable level of convergence in the identification of a probabilistic model for
the mesoscale elasticity tensor of a polycrystalline material. Before utilizing this stochastic mechanistic model as a
predictive tool for system level response, the confidence in the credibility of the model must be established by evaluat-
ing the quality of agreement between the predictions of the model and the experimental or model-based observations.
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Models are often constructed on the basis of certain assumptions and simplifications and they are not more than an ap-
proximation of reality. Thus, from a conceptual point of view all models are wrong, but can be useful if their validity,
within a specified confidence range, is ascertained. Having this in mind, the question of the validation is not the truth
of the model from a physical point of view, but rather the adequacy of the model in representing a certain behavior in
order to be used in predicting a desired response quantity. Hence, in the context of computational mechanics the vali-
dation task is stated from the perspective of intended uses of the model and the evaluation is performed with respect to
a specific quantity of interest (QOI). In stochastic computational modeling, where the uncertainty is involved in either
or both prediction and the observation data, a model validation has to properly accommodate these uncertainties. In
this situation the validation task is often exercised on the basis of some error statistics (see [46–48] for instance).

In the following sections we will address the validation of the probabilistic model for the mesoscale elasticity
tensor presented in Section 3.

4.1 Verifying the Calibration Process

As the most basic sense of validation, first we explore the level of confidence in the model performance when it is
used to reproduce the observations that are directly related to, and at the same scale as, the physical quantity described
by the model. In particular, as the quantities of interest, we consider the following scalar-valued random variables
associated with the invariants of the apparent elasticity matrix[C]:

J1 = tr([C]), (62)

J2 =
1
2
([C]ii[C]jj − [C]ij [C]ji), (63)

J3 = det([C]), (64)

where the Einstein index notation is employed in Eq. (63). The probability density functions (pdf’s) of these quantities
can be estimated making use of the samples of apparent elasticity matrix generated from the calibrated probabilistic
model. These pdf’s can also be estimated by performing fine scale simulation on realizations of random microstruc-
tures. By comparing these two set of pdf’s, we can explore the performance of the mesoscale probabilistic model
in reproducing the observable physical quantities. From a practical standpoint, such a probabilistic description for
observations are often not available. Nevertheless, the comparison of these statistics can provide transparent measures
to characterize the performance, which can be linked to the practical setting by hypothesis test.

For the purpose of validation,Nsim = 500 samples of the random matrix[C] are obtained from performing nu-
merical Monte Carlo simulations using the probabilistic model of the mesoscale elasticity tensor. Moreover,Nsim

realizations of 0.3 mm×0.3 mm 2D microstructure are generated making use of the statistical model for polycrys-
talline microstructures developed in Section 2. Note that this is the same size of the SVE for which the model is
calibrated. The corresponding realization of the apparent elasticity matrix for each microstructure is computed by
performing a fine scale simulation following step 3 of the calibration procedure in Section 3.3 and making use of the
deterministic bounds given by Eqs. (56) and (57). From these two sets of realizations, the corresponding set of values
for J1, J2, andJ3 are then computed. These values are in turn used to estimate the associated pdf’s for model-based
samples as well as fine scale simulations. The estimated pdf’s are compared in Figs. 8–10. The results show that in all
the cases more than 96% of the observations fall in these confidence intervals. This reflects a relatively high level of
confidence in the performance of the model. The computed values of the mean and coefficient of variations (cov) for
each case are reported in Table 1 for the sake of comparison.

As the next logical step, in the following sections we will study the model validation from the perspective of
intended uses of the model. We will particularly explore the performance of the model in propagating the uncertainty
from the fine scale to the coarse scale response. In other words, we will examine whether the variability in the pre-
dictions of the model with respect to a specific response quantity of interest (QOI) is consistent with the fine scale
response. To that end, we will compare the probabilistic description of a desired QOI resulting from solving stochastic
boundary value problems on a domain with two different resolutions of randomness. The coarse scale representation,
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FIG. 8: Plot of the pdf’s ofJ1 = tr([C]) estimated using the samples obtained from the probabilistic mesoscale model
(solid blue line) and the observations computed from fine scale simulations (dashed red line). The results show that
approximately 96% of the observations fall in the 95% confidence interval (black dashed line) of model predictions.
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FIG. 9: Plot of the pdf’s ofJ2 = 1/2([C]ii[C]jj − [C]ij [C]ji) estimated using the samples obtained from the proba-
bilistic mesoscale model (solid blue line) and the observations computed from fine scale simulations (dashed red line).
The results show that approximately 98% of the observations fall in the 95% confidence interval (black dashed line)
of model predictions.

with mesoscale randomness, is constructed with reference to the probabilistic model of mesoscale elasticity tensor.
The fine scale representation, with microscale randomness, is obtained making use of the statistical model of poly-
crystalline microstructure developed in Section 2. The fine scale responses are treated as observations with respect to
which the model validation is exercised. The validation task will be investigated for the static as well as the dynamic
case, i.e., the elastic wave response of the model to the ultrasonic excitation.
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FIG. 10: Plot of the pdf’s ofJ3 = det([C]) estimated using the samples obtained from the probabilistic mesoscale
model (solid blue line) and the observations computed from fine scale simulations (dashed red line). The results
show that approximately 96% of the observations fall in the 95% confidence interval (black dashed line) of model
predictions.

TABLE 1: Second-order statistics, mean and coefficient of variation, of qualities of interest for both
model-based samples and fine scale simulations

J1 J2 J3

Mean Cov Mean Cov Mean Cov

Model-based samples 2.497×105 0.0049 1.480×1010 0.0161 2.341×1014 0.0301
Fine scale simulations 2.499×105 0.0064 1.485×1010 0.0214 2.339×1014 0.0283

4.2 Validation Statement for Static Response

For the purpose of validation, we consider the open bounded domainD =]0, 3[ " ]0, 3[ (in mm) inR2. Null displace-
ment Dirichlet boundary conditions are applied to the boundary∂D1 defined as∂D1 = {x ∈ D|x2 = 0}, while a
static load pressure(0, 1000) (in megapascals) is applied at the free edge∂D2 = {x ∈ D|x2 = 3}. The fine scale
resolutions of domainD is defined with reference to Voronoi-G polycrystal and constructed using the procedure dis-
cussed in Sections 2.2 and 2.3. Each realization of constructed polycrystals consists of approximately 180 grains. The
domain is discretized using triangular isoparametric finite elements. The response of the fine scale representation is
considered as model-based measurements for the purpose of validation. The coarse scale resolutions of domainD are
the continuum mechanics model with mesoscopic randomness. The domain consists of5 × 5 = 25 uniform regions
such that the size of each region is consistent with the size of the SVE for which the probabilistic model of bounded
elasticity tensor has been calibrated. Samples of apparent elasticity matrices are obtained by performing numerical
Monte Carlo simulations of the random matrix[C] that are independently assigned to each region. The entire domain
is then discretized into45 × 45 = 90 quadratic finite elements as shown in Fig. 11. The response of the coarse scale
representation forms the predictions of the candidate model. The validation task is then exercised by depicting and
comparing the probabilistic description of the QOI, in form of pdf’s, for both fine and coarse scale descriptions.

Let x 7→ σ(x) and x 7→ ε(x) be the stress and strain random fields, respectively, resulting from solving the
stochastic boundary value problem for both fine and coarse scale representations, withNmc = 500 Monte Carlo
simulations. As the quantity of interest, the volume averaged strain energy densityϕ = (1/2)〈ε(x)T σ(x)〉V is
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FIG. 11: Typical realization of the coarse scale representation of the domainD in the static case. The domain is
discretized using45 × 45 4-node quadratic elements; SVEs are shown with solid lines, and the thick dashed lines
divide the domain into the subvolumes over which the local averaging is performed.

computed, whereV ⊆ D is the domain over which the averaging is performed. Based onNmc samples of fine and
coarse scale models, estimates of pdf’s ofϕ are obtained. The comparison of two pdf’s is shown in Fig. 12, where the
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FIG. 12: Plot of the pdfs of volume averaged strain energy,ϕ = (1/2)〈ε(x)T σ(x)〉V , over the entire domain; The
dashed red line corresponds to the fine scale representation of domainD generated using the statistical model in
Section 2. The solid blue line corresponds to the coarse scale representation of domainD using the probabilistic
model for mesoscale elasticity tensor in Section 3. The 95% confidence intervals for the model predictions are shown
as black dashed lines. The values of QOI obtained using the upper and lower bounds [Eqs. (56) and (57)] are marked
with “∗.”
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strain energy is averaged over the entire domain, i.e.,V = D. The result confirms that the predictions of the coarse
scale model are in good agreement with the fine scale response. Approximately 80% of fine scale observables belong
to the 95% confidence interval shown on the plot as black dashed lines. The mean and coefficient of variations ofϕ

estimated from fine scale response are 6.006 and 0.030, respectively. These quantities are estimated to be 5.999 and
0.015 based on the coarse scale response. The values of QOI obtained from using the lower and upper bounds for
mesoscale elasticity tensor [Eqs. (56) and (57)] are shown in the plot. These values are consistent with the estimated
pdf of the coarse scale model.

In order to assess the credibility of the model in predicting the local response, the strain energy is also averaged
over a set of subdomains{Vij}3i,j=1 obtained from3×3 = 9 uniformly partitioning ofD (thick dashed line in Fig. 11).
The resulting pdf’s are illustrated in Fig. 13. In most cases the fine scale observations validate the prediction of the
coarse scale model, except when the averaging is performed over the region adjacent to the fixed boundary in which
there is much more variation in the response of the microstructure. This could be due to the large variation in the
stress and strain localization near the fixed boundary in the fine scale response. These local effects are the result of the
fluctuations in the material properties at finer (microscopic) scales which are smoothed at the mesoscale during the
calibration process. Consequently, these fluctuations cannot be propagated to the response of the coarse scale domain
with mesoscopic randomness. In this case the model predictions are mostly concentrated around the mean response
of the fine scale representation.

4 5 6 7
0

4

8

V
11

4 5 6 7
0

4

8

V
12

4 5 6 7
0

4

8

V
13

4 5 6 7
0

4

8

V
21

4 5 6 7
0

4

8

V
22

4 5 6 7
0

4

8

V
23

4 5 6 7
0

4

8

V
31

4 5 6 7
0

4

8

V
32

4 5 6 7
0

4

8

V
33

FIG. 13: Plot of the pdf’s of volume averaged strain energy corresponding to the subvolumes{Vij}3i,j=1 separated by
thick dashed line in Fig. 11 (see the caption to Fig. 12 for the references to color in this figure legend).
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4.3 Validation Statement for Ultrasonic Wave Response

In this section we exercise the validation of the identified probabilistic model in Section 3, when it is used to pre-
dict the desired response in elastodynamic regime. At this stage, we point out that the construction of the random
matrix model for bounded elasticity tensor relies on assumptions that are valid within the range of linear elasto-
static regime. In particular, the proof of the boundedness constraints, obtained using Huet’s partitioning technique,
relies on the energy theorems in elastostatics. As such, using the energy-based bounds is not well justified beyond
the static regime from a theoretical point of view. Also, from the perspective of homogenization theory, overall dy-
namic moduli are generally different from overall static moduli. Nevertheless, we would like to examine the validity
of the model, beyond its range of theoretical assumptions, when it is used as a predictive tool for ultrasonic wave
response.

Nondestructive evaluation (NDE) using ultrasonic waves is extensively used in solid media to assess the quality
of the structural and mechanical components during their manufacturing and lifetime. The applications in the metal-
lic structure include characterization of material properties, detection of flaws, and evaluation of degradation during
service life, to name a few. When an elastic wave propagates through a heterogeneous material, the ultrasonic energy
is dispersed and scattered in many directions due to the interaction with heterogeneities. The scattering is often char-
acterized by attenuation, which reflects the rate of dissipation in the intensity or the amplitude of the incident wave.
Thus, as the QOI, we look at the attenuation coefficient which quantifies the dissipation of wave energy as it interacts
with the heterogeneity.

Let the domainD ⊂ R2 be the open bounded region of]0, 6[ " ]0, 6[ (in millimeters) with displacement-free bound-
ary conditions over the entire boundary∂D. A point source excitation is applied at the point of coordinates(3, 3) (in
millimeters) in thee2-direction in the form of a Ricker pulse in the time domain to model the incident wave. Similar
to Section 4.2, finite element models of both fine and coarse scale resolutions of domainD are constructed. The fine
scale representation in this case consists of approximately 800 grains and is discretized using approximately 140,000
triangular elements. The coarse scale representation consists of20×20 SVEs and is discretized into200×200 = 400
quadratic finite elements. For both fine and coarse scale representations, the stochastic waveforms corresponding to
the displacement ine2-direction are computed in an array of nine equally spaced receivers by solving the stochas-
tic boundary value problem in the time domain withNmc = 100 Monte Carlo simulations. The location of the
source and the receivers on a typical realization of the coarse scale domain is illustrated in Fig. 14. For the dynamic
analysis, the constant value of2700 (in kg/m3) is assumed for the density of aluminum polycrystal throughout the
domain.

Let (x, t) 7→ v(x, t) = [v1(x, t), v2(x, t)] denote the resultingR2-valued displacement random field. The amount
of energy in the waveforms can be characterized by the intensityx 7→ I(x) = [I1(x), I2(x)] defined by

I(x) =
∫

τ

v2(x, t)dt, (65)

whereτ is the time period of duration of the wave. Let{v2(xi, t)}9i=1, wherexi is the location of receiveri, be the
set of stochastic processes of resulting waveforms in thee2-direction at nine receivers. The corresponding set of wave
intensities is denoted as{I2(xi)}9i=1. For each realization of a set of waveforms, the corresponding estimate of attenu-
ation coefficientα is obtained by fitting these values to the best exponential decay function of the formI

o

2e−2α‖xi−xo‖,
wherexo andI

o

2 are the location and the intensity of the source wave, respectively. A typical plot of fitting the expo-
nential decay function to the computed values of intensity is illustrated in Fig. 15. The estimates of pdf’s of QOI, the
attenuation coefficient, are obtained fromNmc realizations ofα for both fine and coarse scale domains. These pdf’s
are compared in Fig. 16 for three different central frequencies of the source excitation,fc = 2, 5, 10 (in megahertz).
It is seen that in this case the predictions of the model always belong to a subset of the observations. There is much
smaller variation in the model predictions relative to the fine scale response. This is expected since the wave scattering
regime is very sensitive to the length scale of the heterogeneity in the medium. For the lower frequency regime,fc = 2
(in megahertz), where the wave propagates over a larger length scale as compared to the length scale of heterogeneity,
we have a quasistatic regime. Hence, the bounds on apparent elasticity matrix may be still valid and the predictions
of the coarse scale model in this case are more consistent as they fall around the mean response. Obviously as we
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FIG. 14: Typical realization of coarse scale domain for dynamic case consisting of20 × 20 SVEs (separated by
thin solid lines). The entire domain is discretized into200 × 200 = 400 quadratic finite elements. A point source is
generated at the center of the domain and the resulting waveforms in an array of nine receivers (black squares) are
used to compute the attenuation coefficient.
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FIG. 15: Typical plot illustrating the estimation of the attenuation coefficientα; the exponential decay function of the
form I

o

2e−2α‖xi−xo‖ (solid line) is fitted to the computed values of intensity (∗) in an array of nine receivers.

increase the frequency of excitation, not only the attenuation is more sensitive to subscale heterogeneity which cannot
be captured by the mesoscale model, but also the bounds becomes more inconsistent with the physics. This can ex-
plain more significant modeling biases observed in the results corresponding to the central frequencies offc = 5 and
10 (in megahertz).
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FIG. 16: Estimates of pdf’s of attenuation coefficientα for three different central frequency of excitations,fc =
2, 5, 10 mHz; the coarse scale (solid line) and the fine scale (dashed line).

5. CONCLUDING REMARKS

In this paper, we have addressed the validation of a predictive model for the mesoscale elastic behavior of materials
with microstructures. We first presented a procedure for summarizing experimental data from microstructural mea-
surements in order to develop a statistical model for characterization and realizations of polycrystalline microstruc-
tures. The model provides an efficient tool to digitally generate realizations of microstructures in accordance with
the available data and is utilized to ensure a reasonable level of convergence in the process of identification of the
probabilistic model of the coarse scale material description. It is also employed in the validation stage for the pur-
pose of generating model-based observations. We then recalled the construction of the candidate probability model
for the mesoscopic description of mechanical system. The linear elastic constitutive matrix of this model is described
mathematically as a bounded matrix-valued random variable. The bounds reflect theoretical bounds consistent with
the theory of elasticity.

We first verify the calibration process by validating the model in the regime of behavior where the calibration
was conducted. The results confirm a high level of confidence in the performance of the model when it is used to
take into account physical phenomena occurring at the calibration scale. The model validation was then studied from
the perspective of intended uses of the model. For this purpose, we solved stochastic boundary value problems using
Monte Carlo simulations for a domain with two different resolutions of randomness. The fine scale representation,
with microscale randomness, is obtained using the statistical model for simulation of microstructures developed in the
first part of the paper. This representation is used to generate the model-based measurements. The coarse scale rep-
resentation, with mesoscale randomness, is defined with reference to the identified probabilistic model of mesoscale
elasticity tensor. We investigated the predictive accuracy of the model predictions by comparing the probability density
functions of a desired response quantity of interest estimated from both coarse and fine scale representations. Based
on the results, the stochastic model of the mesoscale elasticity tensor is found to be adequate to predict the response
quantity of interest in the static regime. Approximately 80% of simulated data, obtained using subscale simulations,
are found to belong to the 95% confidence interval of model predictions. The variation in the model predictions is
adequately consistent with the fine scale response. The validation task was also examined for the case of ultrasonic
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wave response. It is found that in this case the model predictions belong only to a subset of possible behaviors. This
could be because the boundedness constraints in the construction of the model are defined with respect to the elasto-
static behavior. Also the model predictions are not able to adequately account for the fine scale randomness since the
scattering behavior is very sensitive to fine scale fluctuations, which are smoothed at the mesoscale during the cali-
bration procedure. The predictions of the model are more consistent with the mean response for the lower frequency
where we have a quasistatic regime, and hence the bounds on the apparent elasticity matrix may be still valid. More
research is required to define appropriate physics-based bounds on apparent elasticity tensor that are consistent with
the dynamic regime in higher frequencies.

The quantification of damage requires sensor information being interpreted in terms of hierarchy of damage accu-
mulation models, which effectively represent the material and structural changes that occur during the lifetime of the
system. The proposed probabilistic model combined with the finite element analysis can be used as a predictive tool
in the system level in the context of structural health monitoring and damage prognosis. The sensitivity of the model
to the subscale heterogeneity is the key to its applicability in predicting phenomena occurring at the damage initiation
scale.
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