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The purpose of reservoir modeling and simulation is to predict reservoir performance for development and depletion
planning. Despite decades of research, efficient and reliable reservoir performance predictions are still a challenge in
practice. In this paper, we present an overview of reservoir modeling as it is commonly practiced today and the chal-
lenges it faces. More specifically, we focus on the challenges posed by the large amount of uncertainty inherent in
the characterization of reservoirs that are heterogeneous at multiple scales. We discuss the practical implications of
these challenges and recent developments toward addressing them. In particular, we examine the need for effective
parametrization of geologic concepts and related recent advances in parametrization and parameter reduction tech-
niques, including their advantages and limitations. Using numerical examples from two different depositional environ-
ments, we show that effective parametrization can be achieved by taking advantage of the geologic hierarchy underlying
most geologic concepts and a general understanding of the impact of geologic features on fluid flow. Finally, we propose
an approach to systematically derive fit-for-purpose parametrization for practical reservoir modeling problems.
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1. INTRODUCTION

When narrowly defined, reservoir modeling refers to the construction of three-dimensional digital models that repre-
sent a given hydrocarbon reservoir. The simulation of fluid flow on such models is referred to as reservoir simulation.
In the following, we adopt the broader view of reservoir modeling that includes the construction, evaluation, and
calibration of reservoir models.

Reservoir modeling are commonly used to predict hydrocarbon production from a petroleum reservoir over time,
which is also referred to as reservoir performance. The predictions are used for development and depletion planning;
they are often the basis for large investment decisions. Thus, efficient and reliable reservoir performance predictions
are critical to the upstream business in the petroleum industry.

Reservoir modeling is subject to a tremendous amount of uncertainty due to limited data available. Seismic imag-
ining is commonly used to determine large-scale structures of a reservoir, such as major hydrocarbon intervals and
faults. Seismic resolution, however, is often insufficient to resolve geologic features such as thin shale barriers, sub-
seismic faults, and fractures that may strongly impact fluid flow in the reservoir. Uncertainty is also inherent in the
seismic inversion process because a seismic signal is band limited and needs to be supplemented with additional in-
formation that is based on geologic interpretations. For example, the conversion of seismic data from the time domain
(where the seismic signal is recorded) to the depth domain (where the reservoir structure physically resides) requires
calibrated rock physics models that depend on geologic interpretations of the distribution of different reservoir rock
types. Moreover, seismic data do not provide direct measurements of reservoir porosity and permeability, the key
controlling factors on reservoir performance. In contrast, well logs and core analysis provide detailed information of
rock and fluid properties along the well tracks, but they both lack reservoir coverage and are carried out sparsely in
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the field. Therefore, it is usually necessary for a reservoir model to incorporate interpreted or conceived geologic de-
scriptions in order to extrapolate measurements at the wells throughout the reservoir. The descriptions usually contain
lots of uncertainty. We shall call these descriptions geologic concepts (see Section 2 for further explanation).

Given the uncertainty, a reservoir performance prediction should be accompanied by robust uncertainty and risk
assessments. In other words, the prediction should not be a single prediction but a realistic range of predictions. Here,
by “realistic” we mean that the range of predictions are based on a set of reservoir models (not a single model) that
are consistent with the underlying geologic concepts and are calibrated against measured static (e.g., well logs) and
dynamic (e.g., production at wells) field data. At the minimum, the range should cover the actual production profile.
Moreover, the geologic scenarios corresponding to the high- and low-side predictions should be identified. These
scenarios provide the basis for planning reservoir surveillance and risk mitigation. In the following, we will loosely
call a prediction reliable if it satisfies those criteria.

Reliably and efficiently predicting reservoir performance has been a long-standing challenge in the petroleum in-
dustry. One of the main difficulties is the large amount of uncertainty, coupled with the fact that reservoirs are often
strongly heterogeneous at multiple scales. Despite decades of research, efficient and reliable reservoir performance
predictions are still a challenge in practice. The purpose of this paper is to review the challenges posed by the uncer-
tainty, heterogeneity, and recent technical advances toward addressing them. We are particularly interested in effective
parametrization of reservoir models, which is at the very center of the challenge.

This paper is organized as follows. In Section 2, we present an overview of the reservoir modeling practice cur-
rently adopted by the industry and analyze the challenges it faces. This is followed by a closer look at how reservoir
models, especially geologic concepts, are parameterized and various parameter reduction techniques recently devel-
oped. We point out the advantages and limitations of these techniques. Then in Section 4 we propose a parametrization
method based on geologic hierarchy and local multiscale representation. Both ideas are demonstrated by using nu-
merical examples. Finally, some concluding remarks are made in Section 5.

2. RESERVOIR MODELING OVERVIEW

Reservoir modeling is a complicated multidisciplinary endeavor. In the following, an overview of the main steps of
reservoir modeling is provided. It is not meant to be a review of reservoir modeling literature or detailed procedures
and methodologies. Instead, we emphasize on how information and uncertainty propagate through the process. Along
with the steps, we explain the practical challenges faced by reservoir modeling. Before the overview, we first give a
brief introduction to geologic concepts and their role in reservoir modeling.

2.1 Geologic Concepts

A geologic concept describes the general attributes of a class of geologic scenarios for a certain depositional envi-
ronment (e.g., fluvial channels, deep-water fans, carbonate platforms, etc). Mathematically, a geologic concept should
be understood as a parameterized conceptual model of a group of related geologic features in a depositional environ-
ment. A concept typically consists of several environments of deposition (EODs) (see, e.g., [1]), which are related
spatially. Each EOD contains a mixture of different types of sedimentary rocks or facies, which are often classified
based on core observations and measurements. In clastic environments, the grain size and sorting are the main factors
determining the type of a rock. The porosity and permeability within each facies typically are well correlated. For
carbonates, the facies characterization is much more complicated because carbonate deposits often form from many
different biological and chemical processes, and the facies are less of a control on porosity and permeability. For both
clastic and carbonate rocks, especially carbonates, diagenesis may significantly change the porosity and permeability.
Thus, facies and diagenesis together characterize reservoir rock types (RRTs), which are used to control the modeling
of porosity, permeability, and other rock and fluid properties. (For the purpose of this paper, we will use facies and
rock types synonymously.) The spatial relationships and distribution patterns of the EODs and facies are a crucial part
of a geologic concept and also challenging to parameterize.

Geologic concepts are usually based on years of study of outcrops and play a central role in reservoir geol-
ogy. Recently, numerical process-based modeling [2] and tank experiments (see, e.g., [3]) have also been used
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to better understand sedimentary processes and, hence, the spatial relationships and patterns of sediment distribu-
tions.

In reservoir modeling, geologic concepts are used to define reservoir models at subseismic scales. They are used
to interpolate/extrapolate sparse well data throughout the reservoir. Without seismically derived rock type distribu-
tions, the geologic concepts are the only control on the spatial distribution of different rock-types. More importantly,
subseismic features, such as thin shale barriers, can only be inferred and hence modeled through geologic concepts.
These barriers may have a strong effect on fluid flow [4] and cannot be imaged by seismically.

To a large degree, effective parametrization of reservoir models is about the parametrization of geologic concepts.
We will review different methods for parameterizing geologic concepts in Section 3 and propose new approaches in
Section 4.

2.2 From Seismic to Simulation

Reservoir modeling typically starts with some understanding of the geology of the basin where a hydrocarbon reservoir
resides. Depending on the stage at which the reservoir is being evaluated, different field data are collected. At the
beginning of field development, data may include 3D seismic, well logs, and core analysis. As the reservoir enters into
the production stage, more reservoir surveillance data become available, such as time-lapsed 3D seismic (commonly
referred to as 4D seismic), well tests, and production history. The above data have very different resolution and spatial
coverage, see Fig. 1. For instance, the areal and vertical resolutions of core data are∼0.1 ft, and its range of coverage
is∼1 ft areally and hundreds of feet vertically. Note the wide spread of resolution and coverage of different types of
data. As a comparison, the focus of today’s research on reservoir performance prediction is based on reservoir models
with resolutions of 10∼100 ft areally, and 1∼10 ft vertically. A central goal of reservoir modeling is to integrate these
data into a common digital model of desired resolution.

First, faults and major stratigraphic units (bounded from top and bottom by horizons) are interpreted from the
seismic data. The fault and horizon surfaces are then used to build a water-tight structural framework for the reservoir.
This is a nontrivial task because the interpreted surfaces may not fit together, or they may be strongly distorted when
the surfaces are transformed from the time domain to the depth domain (see Section 1). In practice, constructing the
structural framework can take weeks or even months.

FIG. 1: Resolution and range of coverage of different data types used in reservoir modeling as indicated by the
rectangular boxes: The left and bottom sides of each box indicate the horizontal and vertical resolutions, respectively;
the right and top sides indicate the horizontal and vertical ranges, respectively.
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The structural framework partitions a reservoir into volumetric compartments. These compartments determine
the large-scale connectivity among different parts of the reservoir. Connectivity across faults is one of the major
uncertainties in reservoir modeling. Whether a fault is sealing or not depends on many factors, such as the facies near
the faults and the faulting processes. Sometimes, fault-seal analysis can be done to determine the range of possible
transmissibility through faults. Uncertainty also exists in the location and geometry of the fault and horizon surfaces
due to variations in the quality of seismic data. However, this type of uncertainty is seldom accounted for during
uncertainty quantification because changing the frameworks is very time consuming.

When the seismic data can be correlated with well logs and core measurements through rock physics models, one
may derive probabilistic spatial distributions of different facies, such as distributions of sand and shale in clastic reser-
voirs. The distribution may be three-dimensional when the seismic resolution is high and the reservoir is thick, or it
may be two-dimensional because the seismic resolution is low and/or the reservoir is thin. For many deep-water clastic
reservoirs, two-dimensional distributions of sand (or shale) thickness for major stratigraphic intervals are extracted.
Seismic inversion on carbonate reservoirs are generally less successful because seismic waves travel much faster in
carbonates, resulting in lower resolutions. In practice, the application of the seismically derived distributions (also
known as seismic conditioning) is uneven because the correlation between seismic and well data is often uncertain
and takes time to obtain. Another important product of interpretation is the geologic concept to be used for modeling
subseismic features.

Interpretation is a labor-intensive activity, carried out manually in most cases. It involves complex pattern recog-
nition based on the interpreter’s understanding of the geologic setting as well as the petrophysical (and petrochem-
ical) data gathered from wells. Interpretation is often the most time-consuming aspect of reservoir modeling, which
in general takes months to accomplish depending on the amount and quality of data, the complexity of the reser-
voir, as well as what interpreters decide to interpret. Not knowing what geologic features might control the per-
formance of a reservoir, interpreters tend to err on the side of describing more geologic details. However, for the
same reason the interpreters may focus on the wrong set of details. Consequently, a very detailed interpretation may
still lead to poor performance predictions because the details that characterize reservoir performance are missing
[5].

Once the structural framework is constructed, the next phase is to model geologic concepts within the framework.
The standard approach is to use geocellular grids and geostatistics. The modeling proceeds in a hierarchical manner, in
the order of EODs, facies, and rock properties. The EOD boundaries are usually interpreted from seismic and/or well
data. The degree of their uncertainty depends on the quality of seismic data and the number of well controls. Despite
the uncertainty, EODs are typically modeled manually. Uncertainty in EOD boundaries has been difficult to include in
the uncertainty analysis because there lacks an efficient way to change their geometry and cascade the change down
through the hierarchy.

Facies (or RRTs) are modeled stochastically, sometimes with prescribed trends, and conditioned to seismic and
well data by using geostatistical methods (see, e.g., [6, 7] and references cited therein). The most widely used methods
are variogram-based methods that rely on two-point statistics (i.e., variogram). The variograms are not measurable
because data are scarce; they are typically based on studies of outcrops and past experience with similar depositional
environments. In addition to variograms, facies proportions are used to constrain the model. A common practice
is to combine data from wells to derive facies statistics and then apply it to the entire reservoir. In other words,
facies distribution is assumed to be stationary in the reservoir. This assumption is rather strong and unrealistic in
many depositional environments. Sometimes seismically derived facies probability volumes are used to control facies
distribution. See Section 3.1 for further discussions on stochastic modeling.

Once the facies model is in place, porosity, permeability, and other rock properties are modeled using geostatistical
methods [7]. As shown in Fig. 1, core measurements are obtained using rock samples at a scale orders of magnitude
smaller than the typical reservoir model resolution. Bridging this large-scale gap is challenging, especially for flow-
related properties, such as permeability. Rigorous scale-up of these properties requires solving flow equations, which
in turn requires models of fine-scale geology from very sparse data samples. Again, geologic concepts must be used
to create these fine-scale models. Moreover, because the scale gap is so large, a multistage upscaling scheme may
be required [8]. In practice, reservoir models at intermediate scale may be constructed to obtain statistics of rock
properties at a larger scale [9].
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We note that in Fig. 1 geologic models are distinguished from reservoir models. This reflects the common practice
today; that is, one first constructs a geologic model on grids with millions of cells and then coarsens the model to form
a reservoir model for simulation purposes. The main purpose of coarsening is to speed up the simulation runs. See
[10–12] for reviews on various coarsening, upscaling, and multiscale methods developed over the past two decades for
speeding up simulations. The fine-grid reservoir model is traditionally referred to as a geologic model. Traditionally,
the geologic model is regarded as the “truth” or “reference” model. This status of geologic model is artificial, given
the amount of uncertainty is involved. Therefore, we will not make the distinction here.

In addition to rock properties, reservoir fluid properties are also needed before the reservoir model can be simu-
lated. Field measurement of fluid contacts and lab measurement of displacement functions, such as capillary pressure
and relative permeability, are used to populate the reservoir model. The specific procedure will not be discussed here,
although we point out that uncertainty also exists in fluid properties and may significantly impact reservoir perfor-
mance. In the remainder of the paper, we will focus on modeling challenges related to geologic concepts and rock
properties.

2.3 Calibration of Reservoir Models

To reduce uncertainty, reservoir models are calibrated (or history matched) against field and well performance data.
The process is also known as history matching. First, uncertain model parameters are identified and selected. Then,
the parameters are reduced based on their impact on reservoir performance. Finally, various optimization or Bayesian
inversion techniques are used to adjust the parameters so that production history is matched. Note that both of the first
two steps depend strongly on the parametrization of reservoir models.

The parameters involved in practical history matching are typically porosity and permeability multipliers in dif-
ferent reservoir regions and transmissibility multipliers across faults and stratigraphic boundaries. Sometimes, fluid
properties are also adjusted. To be consistent with the geologic concepts, EODs or facies are often used to define the
multiplier regions.

The multipliers are used when the underlying realization of the geologic concept (i.e., EODs and facies) remains
unchanged during history matching. Often, it is important to update the conceptual realization while preserving the
geologic concept. This can be difficult depending on how the geologic concepts are parameterized. For example, the
EOD boundaries are typically modeled geometrically. Thus, changing it would require flexible geometric parametriza-
tions, which usually is not available. Alternative parametrizations using geostatistics are possible. We will look at these
options in more detail in the Section 3. Suffice it to say, modifying EODs is mostly done manually today and can be
time consuming.

It should be pointed out that changing the structural framework of a reservoir model often triggers a complete
rebuild of the model, which is even more time consuming. Therefore, the structural frameworks are kept the same in
most model calibration cases. This is a serious constraint on reservoir modeling. We will not treat this topic further in
this paper.

The calibrated reservoir models are used to predict future productions. In order to capture uncertainty, multiple
calibrated models for different geologic scenarios are desired. However, in practice most of the effort is focused on
obtaining one history-matched model because it still takes several months to get single match. With access to increas-
ingly powerful parallel computers and automated workflows, the time required for history matching is shortening.
Multiple history matches have been demonstrated on real fields (see, e.g., [13]).

2.4 Predictions and Uncertainty Quantification

As mentioned in the Introduction, the goal of reservoir modeling is to predict reservoir performance reliably. This
is a shift from the historical view that reservoir modeling should give accurate predictions. To a large degree, the
shift is due to the increased uncertainty in characterizing reservoirs in challenging geographic locations, such as
deep-water and arctic environments. Because of high development cost, much fewer wells are used to produce from
these reservoirs; reservoir modeling uncertainty increases significantly with decreased well control. Also, large capital
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investments are often decided early in field development when only a few wells have been drilled and uncertainty is
high. For these reasons, it becomes increasingly important to quantify the uncertainty in reservoir performance.

Model-based uncertainty analysis faces the same challenge as those outlined above for model calibration [i.e.,
the lack of efficient parametrization of large-scale features (EODs/facies) of the reservoir model for automated sam-
pling of geologic scenarios]. Moreover, compared to model calibration, uncertainty analysis requires more extensive
sampling of the parameter space. In calibration, model parameters can be screened for their impact on specific per-
formance measures; thus, sampling can be performed in a parameter space with reduced dimensions. In contrast, to
quantify model uncertainty, one must also consider the parameters that have not shown an impact on performance
through production history. These parameters may become important in the later stage of production or when produc-
tion changes due to well management or additional in-fill wells. The dimension of the parameter space depends on the
known complexity of the reservoir, such as number of faults, as well as the complexity of the more uncertain geologic
concepts and their parametrizations. Models with>70 parameters is not uncommon. This number grows rapidly with
the geologic features to be included in the analysis.

One important result of uncertainty analysis is the probability distribution of the reservoir performance over the
parameter ranges. The wider the parameter range (due to uncertainty about the range) is, the more important it is
to characterize the performance distribution in addition to the range. The uncertainty analysis should also produce
an understanding of the geologic scenarios corresponding to the tail ends of the distribution, so that targeted data
gathering can be performed to further evaluate the risks. Interestingly, the need to understand geologic scenarios is
one of the reasons why methods based on stochastic PDEs, which are popular in the hydrology community, have not
found wide applications in the petroleum industry. In any case, extensive sampling of the parameter space is likely
required. As shown by [14], the widely applied experimental design methods in the industry are inadequate to capture
the nonlinear model responses and, hence, the correct performance distribution.

There are many other forms of uncertainty and risk analysis that require less extensive sampling of the parameter
space. For example, finding the range of reservoir performance can be formulated as a global optimization problem,
whose solution requires targeted sampling in the parameter space. The amount of sampling may be less than that
required by computing the probability distribution. Another example is to find geologic scenarios that would lead to
certain fluid (e.g., water) production beyond the handling capability of a given facility design. The geologic scenarios
can be used to plan risk mitigation strategies. Again, the sampling in a subset of the parameter space rather than the
whole space is required. To the authors’ knowledge, this kind of application of reservoir modeling is not common
in the industry today. However, we believe they represent an important class of problems reservoir modeling should
address.

Targeted sampling or not, given the large number of potential parameters in a reservoir model and the fact that
many of them are highly uncertain, it is pivotal to judiciously choose the model parameters so that the dimension of
the parameter space is as small as possible. How to achieve this goal is the focus of the rest of the paper.

3. PARAMETERIZATION METHODS IN RESERVOIR MODELING

According to [15], parametrization of a physical system is the “discovery of a minimal set of model parameters whose
values completely characterize the system (from a given point of view).” In the context of reservoir modeling, ideally
we would like to “select the least complicated model and the grossest reservoir description that will allow the desired
estimation of reservoir performance” [16]. This is easier said than done.

For reservoir modeling, the reality has been and still is “the tendency toward state-of-the-art complexity” which
often leads to the use of overparameterized reservoir models [17]. The parameters that do not have an effect on
production are a major difficulty for history matching [18]. Because there lacks a priori understanding of what geologic
features control fluid flow in a given production scenario, the apparent logical response is to model reservoirs as
detailed as possible so that nothing important would be missed. But this is costly, both in terms of time and effort.
More importantly, contrary to the general belief, putting more details in reservoir models is not more likely to produce
better predictions unless the details that matter to flow are modeled.

In recent years, progress has been made toward recognizing geologic features that are important to fluid flow. An
interpretation paradigm shift from traditional seismic attribute extractions and geostatistical methods focusing dom-
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inantly on net sand distribution to conceptual approaches that better capture the spatial organization of net reservoir
facies and internal flow barriers has been suggested [5]. As an example, Fig. 2 shows the distribution of different EODs
in a cross section through a deep-water channelized model. This distribution is based on the conceptual understanding
of deep-water channelized systems, where, for example, the axis EOD has high porosity and permeability and mar-
gin EOD has lower porosity and permeability. It also has been observed that seismically conditioned, geostatistical
models of deep-water reservoirs were unable to match reservoir behavior observed in 4D seismic or production data.
A parallel study in [19] also showed the importance of modeling the organization and architecture of reservoir facies
in additional to their proportions. On the other hand, the significance of one geologic feature may vary depending on
the measure of subsurface flow. For example, in appraisal and development studies where gross field production is the
main concern, reservoir architecture may not be an important uncertainty unless reservoir connectivity or tortuosity
are affected [20].

Simply put, the pertinent reservoir geology and, hence, the minimal set of geologic parameters that completely
characterize a reservoir vary with the depletion scenario and the objective of reservoir study. The key questions to be
addressed are (i) how to effectively parameterize static geologic concepts, (ii) how to reduce the parametrization with
respect to given flow dynamics, and (iii) how to extract generic learnings from (ii) so that the next modeling effort
can start at a higher ground? In the following, we present a brief overview of existing parametrization methods and
discuss their advantages and limitations with respect to the three questions.

3.1 Parametrization Methods: A Brief Overview

Variogram-based geostatistical methods are the workhorse in the petroleum industry to parameterize geologic con-
cepts, especially facies distributions (see, e.g., [6, 7]). These methods can produce fairly complex facies distributions.
However, they assume stationarity and have difficulty modeling realistic geologic concepts with complex, curvi-
linear, and continuous structures. For this reason, methods based on multipoint statistics (MPS) were developed
[21, 22]. These methods can better handle complex patterns; however, handling nonstationarity remains a challenge.
See [23, 24] for recent development in this area.

The advantage of statistical methods is their ability to condition to hard data (e.g., wells) as well as secondary
information, such as seismically derived facies probabilities. Their “pixel-based” (or voxel-based to be more precise)
approach provides much flexibility in representing complex facies patterns. However, a major drawback of statistical
methods is that enforcing facies continuity is difficult, especially for long, thin facies such as channels [25] and
minority facies such as thin shale barriers draping on the channel boundaries as shown in Fig. 2. Another issue with
statistical methods is the lack of continuous parametrization that is very useful in model calibrations. This latter
difficulty has been addressed by [26, 27] and [28], and more recently by various parameter-reduction methods (see
Section 3.2).

For continuous features, geometric parametrization is natural and very efficient in terms of number of parameters
required. Geologic shape parametrization based on flexible geometric representations have been proposed in [29] and
are recently applied to fluvial environments using event-based modeling that mimic the depositional process [30]. See

FIG. 2: Organization and averaged property of different EODs in a deep-water channelized environment. Note that
the thin shale drapes on the boundaries of the channels have significant impact on fluid flow.
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also [31] for a review on object- and process-based modeling methods. Conditioning object-based or process-based
models to hard data is difficult, especially when the number of constraints is large. Also, the stochastic simulation
of objects render the parametrization discontinuous. MPS methods represent an attempt to resolve this problem by
using geometrically generated models as training images for collecting statistics at various scales. In doing so, the
advantage of the compact geometric parametrization is lost in the “rasterization” of the geometries of reservoir het-
erogeneity.

The recognition that many important geologic features are often associated with depositional and erosional sur-
faces [5] has led to the development of stochastic surface modeling approaches [32–34]. These methods use explicit
surfaces to delineate depositional or erosional boundaries. The surfaces thus provide the subspace on which those
thin shale barriers in Fig. 2 can be modeled. Moreover, the surfaces define volumes for further pixel-based statistical
modeling. Along this line, level-set methods with stochastic velocity models are used to model or calibrate channel
and facies boundaries [35–37]. Other hybrid geometric and stochastic pixel-based approaches are developed to main-
tain facies continuity [25, 38]. It remains to be seen if these hybrid methods will overcome the difficulties faced by
geometric and pixel-based methods.

3.2 Parameter Reduction through Static Compression

Various parameter reduction techniques have been developed for pixel- or voxel-based parametrization of reservoir
models. Most of these developments focus on continuous variables such as porosity and permeability, instead of
EODs and facies. Similar to image compression, this class of methods is based on compressed representation of
rock property distributions on a geocellular grid. Letxi ∈ Rm (i = 1, . . . , n) be a set of centered (i.e., zero mean)
realizations of a random field. We seekp ¿ m basis functions such thatxi can be approximately represented as the
linear superposition of the basis functions

xi ≈ Ayi (i = 1, . . . , n),

whereA is anm× p matrix whose columns are the basis vectors andyi ∈ Rp is the expansion coefficient. LetX and
Y be the matrices with column vectorsxi andyi(i = 1, . . . , n), respectively. In matrix form, we have

Xm×n ≈ Am×pYp×n (p ¿ m).

In other words, the problem is to find a low-rank approximation toX.
Singular-value decomposition (SVD) is a popular choice for this task. Let the rank ofX bek. Thus,k ≤ min(m,n)

and
X = UΣVT ,

whereU is anm × k orthonormal matrix,V is ann × k orthonormal matrix, andΣ = diag(σ1, . . . , σk) is ak × k
diagonal matrix. The numbersσj are the singular values ofX and are arranged in weakly decreasing order

σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0.

Thus, a rank-p (p < k) approximation can be obtained by settingσj = 0 for j > p. That is

Am×p = Um×pΣp×p and Yp×n = VT
n×p. (1)

BecauseVn×p is orthonormal, we have

n∑

j=1

yjyT
j = Yp×nYT

p×n = VT
n×pVn×p = Ip×p. (2)

Note thatyi can be considered as a realization of a random vector inRp. Then, Eq. (2) means that the components
of the random vector are uncorrelated. Recently, efficient randomized algorithms have been developed for truncated
SVD that can handle large data sets. See [39] for an excellent review.
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The above construction ofA in (1) is equivalent to the principal component analysis (PCA) in statistical learning or
a finite dimensional Karhunen-Loève expansion (KLE). Indeed,U are eigenvectors ofXXT , which is proportional to
the empirical covariance matrix for the random realizationsxi. Thus, the KLE can be used to generate realizations with
the same covariance as that ofxi using a set of uncorrelated random variables. In practice, the number of realizations
n is typically smaller thanm. Using KLE to derive stochastic PDEs for subsurface flows for log-normal permeability
fields is well established. Applying KLE as a way to parameterize the reservoir model in history matching appears to
begin with [40] (see also [41]).

Other types of basis functions have also been used to formA. For example, using multiresolution analysis based on
Haar wavelets is proposed as a way to reparameterize the permeability field and wavelet coefficients that are sensitive
to the history data are identified and used for history matching [42–45]. Similarly, discrete cosine transform (DCT)
is used to constructA in [46], where the advantage of DCT over KLE in representing non-Gaussian channelized
features was demonstrated. DCT basis functions are independent of model realizations, although they can be trained
with respect to a given set of realizations [46]. The main advantage of DCT is the availability of fast transform
algorithms. Application of DCT to history-matching problems is shown in [47, 48]. In [48], sparsity constraints on the
expansion coefficients is enforced throughl1 minimization. Note that DCT only applies to tensor product grids and
hence has limited practical applications. However, generating basis vectors on unstructured grids is recently developed
[49].

CompressingX using linear combinations of basis functions is somewhat limited. In [50], nonlinear PCA is
used to parameterizeX in a feature space. The feature space is created by using a nonlinear mappingφ(x), with
x ∈ Rm, φ ∈ Rmf andmf being typically much larger thanm. Various nonlinear mapping can be used to generate
the feature space. Polynomials are used in [50] because they correspond to higher-order multipoint statistics. Then,
PCA is applied on samplesφ(xi) in the feature space. Despite the large dimension of the feature space, PCA can
be done efficiently by using the celebrated kernel trick [51] so that the feature space needs not be formed explicitly.
Applications of this approach to history matching have been demonstrated in [52, 53].

3.3 Remarks on Compression-Based Methods

Although the image compression method represents a general approach toward parameter reduction, it does have
some shortcomings. For practical applications of these methods, one challenge is to relate the basis functions (i.e.,
eigenvectors of some discrete operator) to the geologic concepts underlying the model realizations. The parametriza-
tion through coefficients of basis functions is inherently nongeological. Consequently, one may successfully conduct
history matching using the compressed representation without knowing what geologic changes have been made to
achieve the match.

Another limitation of these methods is that some important fine-scale features, such as continuous thin shale
barriers (Fig. 2), can be difficult to capture using the basis functions. These features are often represented as properties
on certain conceptual surfaces in practice. Even if they are represented explicitly on grid cells, the challenge will be
to construct basis functions to preserve the continuity of the thin barriers, a critical factor determining the effect of the
barriers on fluid flows.

Regardless of the basis functions used, the compression takes advantage of the fact that the reservoir models have
large continuous features. The compression essentially filters out features of short correlation lengths [50]. Typically,
the large-scale features have a dominant effect on flow. On the other hand, static compression will not work if the
reservoir model only contains features of short correlation lengths: the singular values decay slowly and all singular
vectors must be used. Yet, it is well known in reservoir engineering that such models are “so heterogeneous that they
behave homogeneously.” In other words, model parameters can be greatly reduced by using a few effective parameters,
such as effective permeability. Therefore, compression by itself does not address the main parametrization challenge,
namely, representing effective geologic features with respective to flow.

It remains to be seen if the compression-based methods can maintain the spatial organization of facies distri-
butions, which can be important to fluid flow [5, 19]. Thus far, the conceptual models used to demonstrate these
methods are rather simplified. More validation is require by applying these methods to more realistic geologic con-
cepts.
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3.4 Distance-Based Modeling and Dynamic Compression

Another way to measure model similarity is to use a distance (or metric) defined between models [54, 55]. In particular,
the distance may be based on the difference between the production profiles of two model realizations [56]. Thus, the
similarity is based on aggregated dynamic information (e.g., at the wells). As a result, two models having a small
distance between them may not look alike from the static point of view. In this approach, a distance matrixD is
formed fromd(xi,xj) (i, j ∈ [1, n]), whered is a distance function that may require flow simulations. The models
are then mapped into a low-dimensional metric space through multidimensional scaling (MDS) so that the Euclidean
distance in the metric space is a good approximation of the model distances in the physical space. Kernel PCA is
then used to transform the models to yet another metric space with further dimension reduction. If differences in
production profiles are used to define the distance, then the truth model can be characterized in the metric space by
using its distances to other models. This fact has been used to solve history-matching problems. See [57] for a more
detailed review of the process.

The ability to use flow measures as distances is an attractive feature of distance-based modeling. However, the
methodology does not seek parametrization of the static reservoir models. Instead, parametrization of the relative
positions of models is done in the abstract metric space. In the following, we will focus on parametrizations of the
static reservoir models but using flow information.

4. HEURISTIC MULTISCALE PARAMETERIZATION

If the gist of image compression is to extract the continuous features from realizations of geologic concepts and if the
impact of features with short correlation lengths on flow can be captured by coarse-scale effective properties, then it
is natural to ask if parametrization of geologic concepts can be done more directly by taking both facts into account.
In this section, we test the feasibility of combining this understanding with geologic hierarchies to form a heuristic
parametrization method. Because of the geologic hierarchy, the resulting parametrization is inherently multiscale and
closely follow the geologic concepts. We are interested in developing an approach to reduce model parameters based
on flow simulations.

In the following, we show that combining surface representation of thin barriers and volumetric trend functions
may give rise to effective parametrization. We also show that completely filtering out features of short correlations
may not be always desirable. To achieve parameter reduction and maintain flow behavior, multiscale parametrization
is needed. We show that this can be done locally near the wells to preserve the characteristics of well-driven flows. Our
parametrization is similar to surface-based modeling methods (e.g., [32–34]) in the use of volumetric trend functions.
However, a significant difference is that we use trend functions as a way to reduce model parameters. This is reflected
in our use of permeability trend functions instead of stochastically generated permeability field as in, e.g., [32].

4.1 Parametrization Based on Geologic Hierarchy

Many clastic reservoirs exhibit hierarchical structures. In this section, we study the hierarchical structure of the geo-
bodies, its control on reservoir heterogeneity, and the impact of different hierarchies on reservoir performance. Be-
cause it is difficult to get a reservoir model with realistic heterogeneity on all scales, we employ a process-based
numerical model [2]. The model is formed by simulating the sedimentary process during flooding from a river mouth
(orifice) into a basin. Figure 3 shows medial (close to the orifice) and distal (further into the basin) sections of the
model.

Process-based models are based on solving the PDEs that govern the process of deposition and erosion that gen-
erate detailed distribution of grain size in a depositional system (see [2] for the details on the governing PDEs). The
grain size distribution is then used to estimate the porosity and permeability in the field. This physical process creates
depositional bodies at different hierarchy as the deposition location changes. We analyze our process-based reference
model (Fig. 3) by successively removing the heterogeneities in the lowest hierarchy as described below. Figure 4(a)
shows a cross section of the reference model in the distal section. Here, we can see that there are depositional bodies
of different scales. The smallest of those depositional bodies called storey are formed by one single flow event. Small
changes in the location of the feeder channel (caused by small avulsion) generate a sequence of lithologically similar
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(a) (b)

FIG. 3: Process-based model used as reference in this study: (a) Medial section and (b) distal section. Figures are
vertically exaggerated.

(a) (b)

(c) (d)

FIG. 4: (a) Storey level sand hierarchy model with all the detail as process-based model, (b) upscale model with
54 storey-sets, (c) upscale model with five complexes, and (d) upscale sand model at a complex-set detail. In all the
models, shales are at storey-set level. Property shown is log(k) in mD with a range between 0.01 to 1000 and figures
are vertically exaggerated.

sedimentary bodies stacked on each other forming a storey set, also called a lobe, as shown in Fig. 4(b). Geobod-
ies within a storey set thicken, thin, or aggrade vertically. Bigger avulsions results in lobe complexes or simply called
complexes [Fig. 4(c)], which are characterized by alternative thick sandstone, thin sandstone, and mudstone packages.
Even bigger avulsions result in lobe complex sets or simply called complex sets [Fig. 4(d)].

At each hierarchy, the porosity and permeability is generated by upscaling the lower hierarchy features of the ref-
erence model. In Figs. 4(b)–(d), the upscaling is done by simply averaging the properties along the vertical direction.
Although this upscaling method is just simple averaging, the areal property trends are preserved at their respective
hierarchies. When upscaling sand permeability from the reference model to, for example, the complex level, a single
permeability value is obtained for an areal position in a complex. In reality, there are vertical permeability trends
within a complex and they can be modeled using very simple trend functions. Example vertical trends at the complex
level can be channels in complexes are bottom loaded and depositional parts of complexes are top loaded. Figure 5(b)
shows a simple triangle-shaped function to model such variations in the vertical direction. When the trend in Fig. 5(b)
is applied to each complex in Fig. 4(c), we obtain Fig. 5(a). Similar trends can be applied to other hierarchy of geo-
bodies. It will be shown that this simple vertical trend can be used to fine-tune the reservoir performance at a given
hierarchy.

The shale content in the different hierarchies is shown in Fig. 6, which is a good way to look at the different
level of details that can be included in the models. We can clearly see that larger hierarchy shales are laterally more
extensive and thicker and are expected to have more control to the performance of the reservoir.

We carry out reservoir simulation on these different models to determine which level of detail is needed to predict
the reservoir performance. Because the shale in the medial section is less continuous due to larger erosional effects,
the simulation is carried out separately for medial and distal sections. For each section, six models of different levels
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(a) (b)

FIG. 5: Complex model with vertical trend: (a) Permeability of complex model with vertical trend and (b) triangular
trend function used to generate (a).

(a) (b) (c)

FIG. 6: Digitized shale in the distal updip section at three different level of hierarchy. (a) Storey level, (b) storey-
set level, and (c) complex level. Larger hierarchy shales are laterally more extensive and thicker. Storey level shales
incorporate all the shales.

of details are compared: storey model (base case), storey set, complex with vertical trends, complex, complex set, and
a tank model with all internal heterogeneity averaged out. Different levels of shales (Fig. 6) can also be included in
the models. In this study, three injectors were used for both medial and distal sections along with five to six producers.
Gas and water are injected as two possible scenarios to understand the effects of mobility. All wells were active from
the start of production and operated on bottom hole pressure constraints. The production wells would be shut in when
the production rate fell below a certain value. The simulations were run for a maximum of 45 years. See [58] for more
detailed description of the simulation study. Here, we focus on results of particular interest to parametrization.

The two images in Fig. 7 show the recovery curves for water and gas flooding, respectively, in the distal section.
For both the fluid types, a very similar recovery pattern versus level of hierarchy is produced. As the amount of detail
increases, the recovery decreases and the complex level model with vertical trends is very close to the detailed, base-
case model. Complex and complex with vertical trend models have shales at storey-set level (i.e., finer scale shales
are not modeled), whereas other models have all levels of shales. Of course tank model does not have any shale. This

(a) (b)

FIG. 7: Recovery curves in the distal section: (a) Water drive and (b) gas drive.
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signifies that storey-level shales need not be incorporated in the geomodels and storey-set-level shales with complex
level sands (with vertical trends) are enough to capture the detailed model flow responses. This is consistent with
the medial section results, except that complex level shales are important in the medial section, and storey-set-level
shales are important in the distal section; for the distal section, including only complex level shales, proved to be
insufficient (results not shown). This difference is because those levels of shales are continuous in those respective
sections relative to the well spacing.

As mentioned above, the results for the medial section is consistent with distal section. Thus, we will not show the
same comparison for the medial section. Because the results indicate that complex-level model with vertical trends is
a sufficient approximation to the reference model, we would like to test the sensitivity of the reservoir performance to
the vertical trend function. Figure 8 shows the recovery curves of medial section under gas flooding. The vertical trend
function is adjusted to shift the location of the maximum value while preserving the triangular shape. It is interesting
to find out that by simply adjusting the trend function, the response of the reservoir is able to approach the reference
solution from both above and below. This can be used as an easy measure to assess the uncertainty of the reservoir
model after proper level of heterogeneity is parameterized.

4.2 Localized Fine-Scale Parametrization

Heterogeneities are present in a wide range of scales in petroleum reservoirs. Larger scale heterogeneities can be more
easily parameterized based on geologic concepts and measurement, such as EODs and facies boundaries. On the other
hand, smaller scales are associated with more significant uncertainties and their parametrization is more difficult. The
only exception in petroleum reservoirs are the regions near the wells, where direct measurements (e.g., well logs and
core analysis), are possible. In this section, we will show that localized fine-scale parametrization at near well regions
can have a significant effect on the modeling and prediction of reservoir performances.

The reservoir model used in this study is representative of a carbonate platform interior environment of deposi-
tion as shown in Fig. 9. All levels of heterogeneities are represented in Fig. 9(a), which is assumed to be the truth
and considered to be the base case in our comparative study. However, in reality the small-scale heterogeneities are

FIG. 8: Recovery curves in the medial section gas drive.
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(a) (b)

FIG. 9: Permeability distributions of a carbonate platform interior model with different levels of heterogeneity: (a)
Base model where all levels of heterogeneities are represented and (b) comparison model where only large-scale
heterogeneities are parameterized by a smooth trend function.

difficult, if possible, to measure or parameterize. They are usually modeled through a stochastic simulation process.
Modeling and parametrization of large-scale heterogeneities can be relatively easily achieved by constructing certain
smooth trend functions based on the understanding of the relevant geologic concept. Figure 9(b) shows a realization
of such a model, whose properties approximate the average properties of the base model in Fig. 9(a).

In order to compare the predicting capabilities of the two models in Fig. 9, 49 producers and 36 injectors are
placed in the reservoir using a typical five-spot pattern, as show in Fig. 10. The size of the reservoir model is
3000×3000×30 m. Under the five-spot pattern, the resulting well spacing is about 45 acres. The 49 producers are
grouped into seven well groups (designated as Platform A–G) to study the localized production characteristics. Plat-
forms A and G are marked using ellipses in the figure. The rest of them are defined in the same manner from left
to right in that order. The injectors are constrained by a constant injection rate, while the producers are constrained
by a constant bottom hole pressure. Black oil simulation is performed until three pore volumes (PV) of water has
been injected. Figure 11 shows the production curves of the two models. Solid lines are from the base model, and
dashed lines are from the trend function model. We can see from Fig. 11(a) that the two sets of curves for whole field
production are almost indistinguishable. Figures 11(b) and (c) show the production from two individual platoforms,
B and D. Clearly, on the platform level, the productions from the two models do not match. Productions from other

FIG. 10: Five-spot injection pattern used in the reservoir. Green wells are producers, and blue wells are injectors.
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(a) (b) (c)

FIG. 11: Comparison of production of whole field and individual platforms. By convention, green, red, and blue
curves represents oil, gas, and water productions, respectively. Also note that the axes are normalized by the reservoir
pore volume. (a) Whole field production, (b) production from Platform B, and (c) production from Platform D.

platforms exhibit similar differences, and their production curves are omitted in this paper. This indicates that, for this
model, parameterizing only the larger scale heterogeneities are sufficient to the prediction of whole field production
behaviors, where the effects of small scale heterogeneities tend to average out and do not make remarkable difference
as a whole. On the other hand, the mismatch at individual platforms show the need of additional localized details to
better characterize the model and to improve the predictive capabilities of the model based on trend functions.

The model based on trend function produces more at Platform B, and less at Platform D. The variation of the
well index with layers is plotted for the wells in Platforms B and D along the well tracks in Fig. 12. Well index is
essentially the transmissibility between the well bore and the reservoir cells it connects with. It is determined from
the well bore radius, and the shape and property of reservoir cells that are connected to the well. Clearly, there is
a correlation between well index and the productivity of the wells comparing Figs. 11 and 12. For example, for the
wells in Platform B, the well index from the trend function is generally bigger than those from the base case, which
correlates with the fact that trend function model produces more than the base case at the platform. The difference for
Platform D in Fig. 12(b) is less clear, but a simple calculation can show that the average well index along the well
track of the base case is higher than that of the trend function, and thus correlates with the production curves shown
in Fig. 11(c). Because the reservoir cells that are connected to wells have such significant impact on the productivity
of the wells, the near well regions have to be characterized more carefully. Fortunately, this information is usually
available in practice through various technologies, such as core sample analysis and well logging.

On the basis of the above discussion, we construct a new model by replacing the properties of the well-penetrated
cells in the trend function model with respective values from the base model. Figure 13 show slices through the

(a) (b)

FIG. 12: Variations of average well index with layers for wells in Platform B and D: (a) Platform B and (b) platform
D.
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(a) (b) (c)

FIG. 13: Slices of the models through Platform D: (a) Base model, (b) trend function, and (c) trend function with
local adjustments at wells. For the cells that are penetrated by wells, their properties come from the base model (a).
The slices are vertically exaggerated.

location of the production Platform D, which is at the center of the models.We put this new model into production
using the same facilities settings and compare the results to both the base case and the unmodified trend function in
Fig. 14. The production results of the new model are represented using a plus sign; solid and dashed lines are from
the base model and trend function, respectively. Same as before, the whole field productions are almost identical as
shown in Fig. 14(a). At the individual platform level, however, the production results are significantly improved as
compared to the original unmodified trend function.

This experiment shows that localized fine-scale parametrization can significantly improve the prediction capabil-
ities of reservoir models, provided that the large-scale (global) heterogeneities are properly parameterized. Note that
in this experiment the modification of properties (i.e., the localized fine-scale parametrization) is only applied to the
cells penetrated by wells. Further improvements can be expected if the range of modification is extended.

5. CONCLUDING REMARKS

As in any other discipline, the fundamental challenge to reservoir model calibration and uncertainty quantification
is the “curse of dimensionality.” Reducing reservoir model parameters goes a long way toward reliable reservoir

(a) (b) (c)

FIG. 14: Comparison of production of whole field and individual platforms. By convention, green, red, and blue
curves represents oil, gas, and water productions, respectively. Also note that the axes are normalized by the reservoir
pore volume: (a) Whole field production, (b) production from Platform B, and (c) production from Platform D.
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performance prediction. To this end, it is important to look at reservoir modeling problems from the perspectives of
the practical questions the models are expected to address. Complicated geologic concepts may be simplified because
many fine-scale details do not have a strong effect on flow or can be adequately represented by using simple effective
descriptions at larger scales.

Although flow-based screening of model parameters with respect to specific flow scenarios and reservoir perfor-
mance measures is important, the pressing question for the industry is how to generalize the learnings so that lessons
need not be learned repeatedly. As [31] put it, “research that examines which scales of geologic structure affect flow
and transport behavior would be valuable to guide the level of detail required in maps of hydraulic (or reservoir, added
by the authors) properties.” The purpose of such a research is to build up the empirical guidelines instead of rigorous
determinations. In only very special cases, can one prove the irrelevance of some fine-scale geologic features math-
ematically. In general, the impact of geologic features will have to be examined by experimentation using different
flow scenarios, either numerically or otherwise. However, no amount of empirical evidence can prove that a geologic
feature is always unimportant. Nonetheless, the empirical evidences may be used to build probabilistic models, such
as Bayesian networks [59], to provide educated guesses.

As in any scientific endeavor, we must treat reservoir modeling as an iterative process with hypothesis, testing,
and calibration. In this process, one first postulates what geologic details matter to flow and then tests the hypothesis
by adding or removing details and examines the impact of these details on flow and transport. We favor a top-down
approach for several reasons. First, empirically we know that the large-scale geologic features often have strong effect
on reservoir performance. Thus, beginning with the large-scale, gross reservoir description is more efficient in terms
of utilizing our empirical learnings. Secondly, the reservoir geology is less uncertain at the larger-scales and there is
no ambiguity regarding the starting hypothetical model. Besides, the modeling process naturally proceeds from large
to small scales. Thirdly, starting with the large-scale features enable parallel effort of interpretation and modeling.
That said, in practice we can begin with any reasonable guess of the level of details, planning to err on the side of
fewer details and parameters.

Whether further details are needed can be tested against specific questions of interest. These questions depend
on the stage of field development and depletion. For example, in early development, we are interested in whether the
distribution of reservoir performance will be changed significantly by adding further details. For example, we may ask
if further details broaden the performance distribution and hence change our risk assessment. When production data
become available, whether further details can help achieving better history matches will be the focus. As production
goes on, more geologic details will likely be needed to provide nuanced explanation of production data. We note that
the testing does not require direct comparison of two different parametrizations on a model-by-model basis. As in
distance-based modeling [57], the comparison of models can be made in terms of their performance predictions.
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