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An eddy viscosity model can be used as a computationally tractable alternative to that of the Navier-Stokes equations.
Model errors immediately become a concern when considering such an approach, and quantifying this error is essen-
tial to understanding and using model predictions within an engineering design process. In this paper, sensitivity
analysis is presented for a subgrid eddy viscosity model with respect to variations of the eddy viscosity parameter. We
demonstrate the analysis utilizing the sensitivity equation method. Approximating the sensitivity requires the solution
of the eddy viscosity model. Therefore, the eddy viscosity model and sensitivity equation are coupled in our analysis
and computations. An implicit-explicit time-stepping method is developed and analyzed for this set of equations. Our
numerical assessments present the role of the sensitivity in quantifying the modeling error arising from the choice of
various values of the eddy viscosity parameter. The sensitivity computation allows one to identify an interval of reliabil-
ity for the eddy viscosity parameter. This gives the user a range of parameter values for which the eddy viscosity model
can be considered to be a reliable approximation to the Navier-Stokes equations. A two-dimensional cavity problem is
used to illustrate the ideas. In addition, for the standard model problem of two-dimensional flow around a cylinder, the
sensitivity computations are shown to be very useful in improving the flow functional approximations that may be used
within an optimal design algorithm.

KEY WORDS: large eddy simulation, eddy viscosity model, sensitivity analysis, uncertainty quantifica-
tion

1. INTRODUCTION

Turbulence is the center of attention for many scientists because of its practical applications in different branches of
science. In predictions of turbulent flows, it is usual to estimate a suitable average instead of pointwise fluid veloc-
ities. Large eddy simulation, or LES, is a technique for simulation of the turbulent flow using a filtering procedure
on Navier-Stokes equations, ultimately solving the equation for the average velocities. Averaging the Navier-Stokes
equations affects the reliability of the solution, leading to model errors and uncertainty in the model predictions. This
paper introduces the sensitivity analysis method as a means for assessing the uncertainty of the applied LES model.
Assessing model error is only one aspect of the overall framework of error and uncertainty quantification; see [1] for
a recent analysis which accounts for errors of various types within a much more formal framework. A paper pub-
lished recently in this journal [2] shows that a certain method for introducing randomness into systems modeled using
differential equations and their subsequent compuational simulations can significantly influence the power spectrum
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associated with realizations of the random fields. In particular, a parameter distinguishing the type of noise introduced
into the model (white, pink, or brown noise) directly affects statistical properties of the output. Hence parametric
uncertainty can be introduced into the process during the computational simulation of the system. Moreover, when
design algorithms for large-scale engineering models are merged into the framework of uncertainty quantification, a
variety of different stochastic variables is encountered and the uncertainty inherent in those parameters must be prop-
agated through deterministic models [3]. Design sensitivity computation is an important element of these algorithms,
and the ability to compute analytic moments and their design sensitivities is an important feature that is currently
being explored [4]. The focus of this paper is the construction of an algorithm for efficient and accurate computation
of sensitivity information for a particular LES model.

Generally speaking, sensitivity analysis of a physical system is the computation of derivatives of its state vari-
ables with respect to parameters upon which the response of the system explicitly and/or implicitly depends. By
this definition, there are basically two main approaches for numerically approximating the sensitivities. One is using
finite differences and the other is to form an equation for the designated sensitivity and then numerically solve it.
The latter is called the sensitivity equation method or SEM. The SEM is classified into two different methods, the
continuous sensitivity equation method or CSEM and the automatic differentiation method or ADM. This catego-
rization follows from the issue of obtaining the discrete sensitivity equation either by first differentiating the state
equation and then discretizing both the state and the sensitivity equations or by first discretizing the state equation
and then differentiating the discretized equation to obtain a discrete sensitivity equation. The CSEM corresponds to
the differentiate-then-discretize approach, and the ADM corresponds to the discretize-then-differentiate algorithm. In
ADM, the discrete sensitivity system is obtained using automatic differentiation software, and this approach has been
well-studied and has seen significant developments in the last 20 years; see [5–10] for just a few of the many examples
in the literature. CSEM and ADM are not completely mutually exclusive techniques. The two can be combined, and
this is illustrated in [11].

Sensitivities computed by CSEM or ADM are not the same, but in both approaches, as grid sizes go to zero the
discrete sensitivities converge to the same entity in most cases. There are examples where the sensitivity function
is less smooth than the original state variable. If this is not taken into account, each approach can fail to yield the
correct sensitivity approximation; see [12] for a simple one-dimensional (1D) example to illustrate this issue. To
study advantages and disadvantages of these two strategies in detail, please see [13]. Both CSEM and ADM have
been used successfully in many cases, and the approach one may choose depends on which one is easier to handle
in the context of its disadvantages. A recent paper by Li et al. [14] demonstrates the use of AD and adjoint method
techniques to augment sampling methods with derivative information for efficient estimation of system response
under parametric uncertainty. Although the computation of the gradient of the system response may be relatively
expensive when compared to the cost of one system simulation for a given choice of parameters, the computational
cost is also independent of the dimension of the parameter space. For model simulations with a large number of
system parameters, using this approach holds a clear advantage over the CSEM. The paper also shows that obtaining
derivative information using that approach must address issues of ill-conditioning in the polynomial regression, and
differentiability with respect to uncertainty quantifiers is assumed for the theoretical results.

When one is utilizing a flow solver code, a finite difference quotient approximation to a sensitivity is simple to
implement. However, it may not be an efficient method for computing sensitivities (see for example [15]). It produces
large errors in addition to being computationally expensive in the sense that the code used for calculating a nonlinear
flow has to be run for two different parameter inputs at the very least (see surveys [13, 15]).

In computing the flow sensitivity via CSEM, once the flow solution is obtained only a linear equation needs to
be solved, which can be done using the same program as the one used for approximating the flow. Often the flow
sensitivity solution can be done simultaneously with the flow solve or as one extra linear solve once the flow solver
has converged. Hence, the sensitivity computation is obtained for a fraction of the computational cost of the original
flow solve. Therefore, the use of CSEM is preferable to the use of the finite difference method, and one goal of
this paper is to illustrate that extra computational effort expended in the sensitivity solve is far outweighed by the
additional information that the sensitivity information provides the model practitioner. A comparison between these
two methods in calculating sensitivity has been presented for a specific forebody design problem by Borggaard et
al. [15] and for the specific model problem in this paper by the author in [16]. CSEM has been used to compute the
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sensitivity of flows with respect to different flow-related parameters. Much work has been done on this by Borggaard,
Godfrey, and others (see the surveys [17–22]).

This paper focuses on the sensitivity of a subgrid eddy viscosity model or EVM with respect to the variation of the
eddy viscosity parameter using CSEM. If we consider the eddy viscosity parameter as the filter length scale in the fluid
model (see [16]), then sensitivity analysis can be used as a tool to compute the flow solution uncertainty due to the
choice of the filter length scale. One subgrid EVM idea was introduced by Layton in [23]. In [24], the authors present
the analysis and numerical computations of two first-order semi-implicit schemes for EVM as well as Navier-Stokes
equations. An error analysis of EVM using discontinuous polynomial approximations can also be studied in [25].

The subgrid EVM in a bounded, simply connected two- or three-dimensional domainΩ with polygonal boundary
∂Ω is outlined as follows:

wt + w · ∇w − ν∆w +∇p− α∇ · P ′(∇w) = f, in Ω× (0, T ]
∇ · w = 0, in Ω× [0, T ]

w = 0, on∂Ω× [0, T ]
w(x, 0) = w0(x), in Ω. (1.1)

Here w : Ω × (0, T ] → Rd, d =2 or 3, represents the resulting approximation of the large eddy velocity of a
viscous incompressible fluid,p : Ω × (0, T ] → R the large eddy pressure,P ′, the complement of filtering operator,
is considered asP ′ = I − P , whereP : L2(Ω) → L is anL2-orthogonal projection, defined on a chosen subspace
of L2(Ω) [23], denoted byL, andf , the external force, is inL2[0, T ; L2(Ω)]. In this modelν > 0 is the kinematic
viscosity, which is inversely proportional to the Reynolds number Re, andα, the eddy viscosity parameter, corresponds
to the filter length scale in LES models. Therefore its values vary between 0 and 1 withα = 0 corresponding to the
Navier-Stokes equations.

Because different values ofα in (1.1) cause different responses of the flow, it is natural to explore the sensitivity
of the flow system and also the uncertainty of some computational fluid dynamics predictions which can be affected
by changing the flow solution with respect to the variation of this parameter.

Generally, the EVM takes the form of finding the approximate large-scale velocityw and pressurep satisfying
∇ · w = 0 and

wt + w · ∇w − ν∆w +∇p−∇ · (νT (α, w)∇sw) = f, (1.2)

where∇sw = 1
2 (∇w +∇tw), andνT is the eddy viscosity coefficient that must be specified to select the model. One

of the most commonly used EVMs is the Smagorinsky model that is given by the eddy viscosity choice of

νT (α, w) = (Csα)2|∇sw|. (1.3)

Once the Smagorinsky constantCs ∈ [0.01, 0.1] and the initial boundary conditions are specified, for a givenα

Eqs. (1.2) and (1.3) determine a solution(w, p) implicitly as a function ofα displaying sensitivity with respect to the
variations of this parameter. Sensitivity discussion of (1.2) is given in [26]. Other types of EVM are presented and
analyzed in [27–29].

The contribution of this paper is twofold. First the sensitivity equation of EVM introduced by Eq. (1.1) with
respect to the eddy viscosity parameter is derived. The complete numerical analysis of this equation using a semi-
implicit discretization motivated by the work of authors in [24] is provided. Second, the sensitivity information is
used to quantify the uncertainty of the EVM solution due to the variations ofα. Furthermore, the paper extends the
application of the sensitivity computation in improving the predictions of flow functionals.

The paper is organized as follows. Section 2 contains some basic notation and mathematical preliminaries. In
Section 3, we derive the sensitivity equation of EVM with respect to the eddy viscosity parameterα. Then we illustrate
the discretizations and numerical analysis of both EVM and its corresponding sensitivity equation in Sections 4 and
5. The last section is devoted to numerically demonstrating the use of sensitivity computation in uncertainty analysis
of the flow solutions themselves as well as in the improvement of drag estimation. Two standard benchmark problems
provide the illustrative examples.
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2. PRELIMINARY NOTATION AND FUNCTION SPACES

In this section we briefly introduce some definitions and notations which will be used often throughout this work.
For a comprehensive presentation of each concept we refer the interested reader to [30] and [31]. TheL2(Ω) inner
product, norm, and the seminorm of vectors and tensors are presented by(·, ·), || · ||, and| · |, respectively. For the
Hilbert spaceHr(Ω), the seminorm is denoted by| · |r.

Following is the notation for function spaces that provide us with the natural environment for the variational theory
of partial differential equations,

X = H1
0(Ω) = {v ∈ (L2(Ω))d : ∇v ∈ L2(Ω)d×d, v = 0 on∂Ω},

Q = L1
0(Ω) = {λ ∈ L2(Ω) :

∫

Ω

λdx = 0},
V = {v ∈ X : (λ,∇ · v) = 0, for all λ ∈ Q},

For any triangulationTh of Ω and any positive integerr, if Pr denotes the set of polynomials of degreer, the
finite dimensional subspaces are

Xh = {vh ∈ X : vh ∈ (Pr(4))d, ∀4 ∈ Th},
Qh = {λh ∈ Q : λh ∈ Pr−1(4),∀4 ∈ Th}.

The following definitions of norms and function spaces are provided for simplicity in notation.

Definition 2.1.
ForΩ ⊆ Rm the(a, b) weighted norm of a functionu : Ω → R is defined by

||u||2a,b = a|u|2 + b||P ′(∇u)||2.
Definition 2.2.
Forp, q ∈ [1,∞), let for anyt ∈ [0, T ], u(t) ∈ Lp(Ω). Then for any positive integerN , define

||u||Lq(Lp) =

[∫ T

0

||u||qLpdt

]1/q

,

||u||L∞(Lp) = sup
0≤t≤T

||u||Lp ,

||u||lq(Lp) =

[
∆t

N∑

i=0

||u(i∆t)||qLp

]1/q

,

where∆t = T/N , and the function spaces are defined by

Lq(Lp) = {u(t) ∈ Lp(Ω) : ||u||Lq(Lp) < ∞},
lq(Lp) = {u(t) ∈ Lp(Ω) : ||u||lq(Lp) < ∞}.

For the treatment of the convective term in Eq. (1.1), we remind the reader that the following trilinear form

b(u, v, w) =
∫

Ω

u · ∇v · wdx, ∀u, v ∈ H1(Ω), w ∈ H1
0(Ω)

is well-defined and continuous on these spaces and it is skew-symmetric in its last two arguments. As shown in [30],
if u,∇v, w ∈ L2(Ω),∇ · u = 0 andu · n̂ = 0 on∂Ω, then

b(u, v, w) = 0, ∀v ∈ H1
0(Ω).

In the analysis, we often use the following inequalities:
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• Young’s inequality: for any real numbersa, b, andε > 0:

|ab| ≤ ε

p
ap +

ε−q/p

q
bq, where

1
p

+
1
q

= 1

with p = q = 2 or p = 4/3 andq = 4.

• Generalized Ḧolder’s inequality: Letu ∈ Lp(Ω), v ∈ Lq(Ω), andw ∈ Lr(Ω) so that1 ≤ p, q, r ≤ ∞, and
(1/p) + (1/q) + (1/r) = 1. Then

∫

Ω

|uvw|dx ≤ ||u||Lp ||v||Lq ||w||Lr .

• Poincare-Friedrich’s inequality: IfΩ is bounded and connected, then there is a constantC such that

||u|| ≤ C|u|, ∀u ∈ H1
0(Ω).

It is well known that Gronwall’s inequality plays an important role in the study of differential systems of various
kind. Here we state the discrete version of Gronwall’s inequality (see [32]).

Lemma 1. If y(k), a(k) : Z+ → R+, C ≥ 0 satisfying the conditiony(0) ≤ C and

y(k) ≤ C +
k−1∑

i=0

a(i)y(i),

then

y(k) ≤ C exp

(
k−1∑

i=0

a(i)

)
.

Overall in this paper,C denotes a generic positive constant and is independent of the mesh size, the viscosityν,
and the eddy viscosity parameterα.

It is known from [33] that if the right-hand side functionf in Navier-Stokes equations (1.1) withα = 0, belongs
to L2(0, T ; (H1

0)
∗) where(H1

0)
∗ denotes the dual space ofH1

0, there exists a solutionu such thatu ∈ L2(0, T ;H1
0)∩

L∞(0, T ;H1
0). We assume in addition thatut ∈ L∞(0, T ;H1

0) and for any integerr ≥ 1,

inf
vh∈Xh

||u− vh|| ≤ Chr+1|u|r+1, ∀u ∈ Hr+1 ∩X, (2.1)

inf
vh∈Xh

|u− vh| ≤ Chr|u|r+1, ∀u ∈ Hr+1, (2.2)

inf
λh∈Qh

||p− λh|| ≤ Chr|p|r, ∀p ∈ Hr ∩Q. (2.3)

By assumptions (2.1)–(2.3), we aim to find the error estimates that are of optimal order with respect to the mesh
sizeh, ash → 0. Error estimates of(r + 1)st-order based on (2.1)–(2.3) are obtained if the selected finite element
spaces for the discrete velocity and pressure possess(r + 1)st-order approximability properties, i.e., those consisting
of piecewise polynomial functions of degree less thanr andr − 1, respectively (see [34, 35]).

3. THE CONTINUOUS SENSITIVITY EQUATION OF EVM

Various responses of the turbulence models to the users-elected model parameters have naturally led the scientists
to study the sensitivity of models with respect to the variations of those parameters. For example, the EVM in (1.1)
displays a sensitivity to the different values of parameterα. We apply the CSEM as a technique for such study and in
this section we form a system of the continuous equations for the sensitivity by implicit differentiation of (1.1), with
respect toα.
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Definition 3.1.
Let (w, p) be the solution of (1.1). The sensitivity of (w, p) to variations ofα is defined to be the derivative of (w, p)
with respect toα.

s =
∂w

∂α
, q =

∂p

∂α
.

Assuming that theL2-orthogonal projectionP is differentiable with respect to parameterα, since this operator is
a linear operator, using the chain rule it is easy to show that the operatorP and thenP ′ commute with differentiation
with respect toα. Therefore, sensitivity of the solution (w, p) of the system (1.1) can be computed from the following
sensitivity equation:

st + w · ∇s + s · ∇w − ν∆s +∇q − α∇ · P ′(∇s) = ∇ · P ′(∇w), in Ω× (0, T ]
∇ · s = 0, in Ω× [0, T ]

s = 0, on∂Ω× [0, T ]
s(x, 0) = s0(x), in Ω. (3.1)

As it can be observed in (3.1),w appears in the sensitivity equation. Therefore, to complete the sensitivity analysis we
need to couple (3.1) with (1.1). Sensitivities in LES models have been introduced and discussed in [26]. The algorithm
of computing sensitivity from (3.1) is presented in [16].

4. THE DISCRETIZATIONS

This section is devoted to introducing the basis for deriving a finite element approximation of (1.1) and (3.1). We
first assume that the three basic aspects of the finite element method, i.e., the existence of a triangulation ofΩ, the
construction of a finite dimensional subspace consisting of piecewise polynomials, and the existence of a basis of
functions having small support, hold. Then we apply the following classical steps:

• Variational Formulation: Equations (1.1) and (3.1) are reformulated in a weak form after multiplication by a
suitable set of test functions,v ∈ X andλ ∈ Q, and performing an integration upon the domain. At this stage,
the integration by parts is used to reduce the order of differentiation for solutions,w ands.

• Discretization in Space: Let h ∈ (0, 1], tending to zero, be the mesh spacing for finite element, thenV h =
{vh ∈ Xh : (λh,∇ · vh) = 0, for all λh ∈ Qh} is a finite dimensional subspace ofXh. In generalV h is not
a subspace ofV , but since(V h, Qh) fulfills the inf-sup or Babuska-Brezzi stability condition, the pressureph

can be eliminated from the system in its discrete form (see [30]). By a similar analysis, its discrete sensitivity
qh is removed from the sensitivity equation. In the resulting equations, for eacht ∈ [0, T ], wh andsh are
solved inV h. In addition, the nature of theL2-orthogonal projectionP leads us to consider a multiscale spatial
discretization for the model as follows. Leth andH denote two different mesh widths(h < H). Let LH ⊂
L2(Ω)d×d, d = 2 or 3, be a finite element space. A discrete analogPH : L2(Ω)d×d → LH of theL2-orthogonal
projectionP is defined by

(PH(u), l) = (u, l), ∀u ∈ L2(Ω)d×d, l ∈ LH . (4.1)

Note thatPH is determined by the choice ofLH . The spaceLH is considered as the space of large scales of the
velocity that are numerically solved by EVM sinceH represents the coarse mesh size. By the properties ofP
as anL2-orthogonal projection, it is easy to show thatP ′H(∇wh) = P ′(∇wh)|LH . Therefore, for simplicity in
notations we useP ′(∇wh) instead ofP ′H(∇wh).

• Discretization in Time: We start with partitioning the time interval[0, T ] into N subintervals[tn, tn+1] of length
∆t = T/N , with t0 = 0 andtN = T . Then, at each time leveltn, an approximation tow ands, denoted bywh

n

andsh
n, respectively, are obtained. To achieve a full discretization of (1.1) and (3.1), we use a first-order implicit-

explicit time-stepping scheme. This scheme was first introduced and analyzed for a convection-diffusion type of
equation in [36]. A complete analysis of this scheme along with another semi-implicit scheme for EVM can be
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studied in [24]. The method uses an implicit structure on stabilizing terms and an explicit one on unstabilizing
terms. The discretization leads to linearizingw · ∇w by wn · ∇wn+1 in Eq. (1.1) and treatingP (∇w) in (1.1)
and alsoP (∇s) in (3.1) explicitly.

Note that the time discretizations of the EVM and sensitivity equations are of a basic Euler approach. The details
of each step of the discretization are described below.

The variational formulations of EVM and CSEM inX andQ are, respectively, given as

(wt, v) + (w · ∇w, v) + (ν + α)(∇w,∇v)− (p,∇ · v)− α(P (∇w), P (∇v)) = (f, v),

(λ,∇ · w) = 0, (4.2)

for all v ∈ X, λ ∈ Q and

(st, v) + (s · ∇w + w · ∇s, v) + (ν + α)(∇s,∇v)− (q,∇ · v)

− α(P (∇s), P (∇v)) = −(∇w,∇v) + (P (∇w),∇v),

(λ,∇ · s) = 0, (4.3)

for all v ∈ X, λ ∈ Q.
The discretized variational formulation of (4.2) and (4.3) in space, respectively, read as follows:

(wh
t , vh) + (wh · ∇wh, vh) + (ν + α)(∇wh,∇vh)− (ph,∇ · vh)− α(P (∇wh), P (∇vh)) = (f, vh),

(λh,∇ · wh) = 0, (4.4)

and
(sh

t , vh) + (sh · ∇wh + wh · ∇sh, vh) + (ν + α)(∇sh,∇vh)− (qh,∇ · vh)

− α(P (∇sh), P (∇vh)) = −(∇wh,∇vh) + (P (∇wh),∇vh),

(λh,∇ · sh) = 0, (4.5)

for all vh ∈ Xh, λh ∈ Qh. Let vh ∈ V h, then Eqs. (4.4) and (4.5) can be rewritten equivalently as follows:

(wh
t , vh) + (wh · ∇wh, vh) + (ν + α)(∇wh,∇vh)− α(P (∇wh), P (∇vh)) = (f, vh) (4.6)

(sh
t , vh) + (sh · ∇wh + wh · ∇sh, vh) + (ν + α)(∇sh,∇vh)− α(P (∇sh), P (∇vh))

= −(∇wh,∇vh) + (P (∇wh),∇vh).
(4.7)

The fully discrete form of (4.6) and (4.7) reads as follows: Givenwh
n, we seekwh

n+1 satisfying

1
∆t

(wh
n+1 − wh

n, vh) + (wh
n · ∇wh

n+1, v
h) + (ν + α)(∇wh

n+1,∇vh)

− α(P (∇wh
n), P (∇vh)) = (fn+1, v

h),∀vh ∈ V h.

(4.8)

Similarly, givensh
n, we findsh

n+1 such that

1
∆t

(sh
n+1 − sh

n, vh) + (sh
n+1 · ∇wh

n+1 + wh
n+1 · ∇sh

n+1, v
h) + (ν + α)(∇sh

n+1,∇vh)

− α(P (∇sh
n), P (∇vh)) = −(∇wh

n+1,∇vh) + (P (∇wh
n+1),∇vh), ∀vh ∈ V h.

(4.9)

The algorithm for numerically calculating theL2-projection terms in (4.8) and (4.9), i.e.,P (∇wh
n) andP (∇sh

n), is
presented in [16]. Next, we study the stability and the convergence of the approximated large eddy velocityw and its
sensitivitys resulting from (4.8) and (4.9), respectively.
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5. THE STABILITY AND ERROR ANALYSIS

This section illustrates the stability and error estimate of the approximated eddy viscosity and its sensitivity in (4.8)
and (4.9). The stability and error bounds, and the rate of convergence for EVM in (4.8) is stated in Proposition 5.1,
Theorem 3, and Corollary 5. The proofs of these results are similar to the ones for the sensitivity equation in (4.9) and
can be also found in [24]. Therefore the authors present the proofs for the sensitivity equation that are more technical.

Our error analysis requires us to assume that for a constantC, the finite dimensional spaceLH satisfies an inverse
inequality of the form found in [23] and given by

||P (∇vh)|| ≤ CH−1||vh||, ∀vh ∈ Xh. (5.1)

The inverse inequality (5.1) is satisfied if the projection spaceLH is chosen so thatLH = ∇XH . As an example,
consider selecting the function spacesXh andLH to be continuous piecewise linear polynomials andL2-piecewise
constant functions, respectively.

In addition, we list an equality and some inequalities that are used throughout the given proofs in the following
lemma.

Lemma 2. Letuh, vh ∈ Xh, then the following equality and inequalities hold:

|vh|2 = ||P (∇vh)||2 + ||P ′(∇vh)||2 (5.2)

||P (∇vh)|| ≤ |vh| (5.3)
1
2
(||vh||2 − ||uh||2) ≤ (vh − uh, vh) (5.4)

(
P (∇vh), P (∇uh)

) ≤ 1
2
(||P (∇vh)||2 + ||P (∇uh)||2). (5.5)

Proof. The equality (5.2) is obtained using the fact thatP andP ′ are complement projections, i.e.,P + P ′ = I. The
inequality (5.3) is an immediate conclusion of (5.2). Inequalities (5.4) and (5.5) are basic inequalities in algebra.

Proposition 5.1.
For any positive integerN , the solutionwh

N of (4.8) is bounded and

||wh
N+1||2 + ∆t

N−1∑
n=0

||wh
n+1||2ν,α + (ν + α)∆t|wh

N+1|2

≤ ||wh
0 ||2 + α∆t|wh

0 |2 +
1
ν

∆t

N∑
n=0

||fn+1||2.

Proof. See [24].

The proofs of Proposition 5.2 and Theorem 4 are largely technical; therefore we give in advance a brief sketch of
those proofs step by step.

Step 1: In variational formulation (4.9), move the convective and the projection terms to the right side.

Step 2: Choose the test functionvh = sh
n+1 and modify the convective term as following:

b(sh
n+1, w

h
n+1, s

h
n+1) = b(sh

n+1, w
h
n+1 − wn+1, s

h
n+1) + b(sh

n+1, wn+1, s
h
n+1). (5.6)

Step 3: Apply the Cauchy-Schwarz inequality then Young’s inequality on each term of the right-hand side.

Step 4: Sum the inequality over the time and apply Gronwall’s Lemma 1.
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Proposition 5.2.
Given any strong solutionw of (1.1) and its approximated solutionwh of (4.8) on the interval[0, T ] such that∇(w−
wh) ∈ l4(L2), for any positive integerN , the sensitivity solutionsh

N of (4.9) is stable. Specifically,

||sh
N+1||2 + ∆t

N∑
n=0

||sh
n+1||2ν,α ≤ C∗

(
||sh

0 ||2 + α∆t|sh
0 |2

+
8
ν

[
||wh

0 ||2 + α∆t|wh
0 |2 +

1
ν

∆t

N∑
n=0

||fn+1||2
])

.

(5.7)

Proof. First take the convective and the projection terms in (4.9) to the other side of the equation. Then setvh = sh
n+1,

replaceb(sh
n+1, w

h
n+1, s

h
n+1) according to (5.6), and apply the inequality (5.4) to the first term on the left side to get,

1
2∆t

(||sh
n+1||2 − ||sh

n||2) + (ν + α)|sh
n+1|2 ≤ b(sh

n+1, wn+1 − wh
n+1, s

h
n+1)

− b(sh
n+1, wn+1, s

h
n+1) + α(P (∇sh

n), P (∇sh
n+1))− (∇wh

n+1,∇sh
n+1) + (P (∇wh

n+1),∇sh
n+1)

(5.8)

To find the stability bound, each term on the right side of (5.8) should be bounded. The standard method is to apply
the Cauchy-Schwartz inequality followed by the Young’s inequality. This implies

1
2∆t

(||sh
n+1||2 − ||sh

n||2) +
(ν

2
+ α

)
|sh

n+1|2 ≤
1
4

(
6
ν

)3

C(||∇(wn+1 − wh
n+1)||4 + ||∇wn+1||4)

||sh
n+1||2 +

α

2
||P (∇sh

n)||2 +
α

2
||P (∇sh

n+1)||2 +
2
ν
||∇wh

n+1||2 +
2
ν
||P (∇wh

n+1)||2

Sum the above inequality from 0 toN , then multiply by2∆t to get

||sh
N+1||2 + ∆t

N∑
n=0

||sh
n+1||2ν,α ≤ ||sh

0 ||2 + α∆t|sh
0 |2 +

1
2

(
6
ν

)3

C∆t

N∑
n=0

(|wn+1 − wh
n+1|4

+ |wn+1|4)||sh
n+1||2 +

4
ν

∆t

N∑
n=0

(|wh
n+1|2 + ||P (∇wh

n+1)||2
) (5.9)

Using the inequality (5.3) on the right-hand side of (5.9) and by Gronwall’s inequality, one finds

||sh
N+1||2 + ∆t

N∑
n=0

||sh
n+1||2ν,α ≤ C∗(||sh

0 ||2 + α∆t|sh
0 |2 +

8
ν

∆t

N∑
n=0

|wh
n+1|2),

whereC∗ = exp{1/2(6/ν)3C(|w − wh|4l4(L2) + T |w|4L∞(L4))}. The bound in (5.7) is obtained simply by replacing

the stability bound forwh from Proposition 5.1 in the last inequality.

Theorem 3. Let (w, p) be a strong solution of (1.1) on the interval[0, T ]. Suppose

wtt,∇wt,∇wttt ∈ L∞(L2).

Let en = wn − wh
n denote the global error. Assume thate0 = 0. Then, the approximated solutionwh

n is convergent
and there is a constantC∗ independent ofα, h, andH such that

max
n=0,...,N

||en+1||2 + ∆t

N∑
n=0

||en+1||2ν,α + α∆t||P (∇eN+1)||

≤ Ch2rB1(ν,α,H) + TC∗∆t2B2(ν, α),

(5.10)
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where

B1(ν,α,H) =
{

(h2 + ν + α) + C∗
[

1
ν

(h2|w|2L∞(L2) + h2||wh||2L∞(L2) + α2

+ α2H−2h2) + ν

]}
|w|2l2(Hr+1) + C∗

1
ν

(Th4|wt|2l∞(Hr+1) + |p|2l2(Hr)),

B2(ν, α) =
1
ν

(||wtt||2L∞(L2) + α2|wt|2L∞(L2) + α2∆t4|wttt|2L∞(L2))

+ α(||P ′(∇wt)||2L∞(L2) + ∆t4||P ′(∇wttt)||2L∞(L2)).

Proof. See [24].

Following is the algorithm of the proof of Theorem 4 on sensitivity error estimation.

Step 1: Subtract the variational formulation (4.9) from (4.3) to obtain the error equation (5.14). Notice that the
local truncation error is in the following form:

(τn+1, v
h) =

(
sn+1 − sn

∆t
− st(tn+1), vh

)
+ α∆t

(
P (∇st(tn+ 1

2
)), P (∇vh)

)

− α∆t

(
P

(
∇st(tn+ 1

2
)− sn+1 − sn

∆t

)
, P (∇vh)

) (5.11)

Step 2: Take(s̃, q̃) ∈ (V h, Qh) to be any interpolation and split the errores
n = sn − s̃n − (sh

n − s̃n) = ηn − φh
n.

Setvh = φh
n+1 andλh = q̃n+1 and replaceP by I − P ′ to get (5.15).

Step 3: Use (5.2), (5.4) and (5.5). Rewrite the trilinear terms as follows:

b(sn+1, wn+1, φ
h
n+1) + b(wn+1, sn+1, φ

h
n+1)− b(sh

n+1, w
h
n+1, φ

h
n+1)

− b(wh
n+1, s

h
n+1,φ

h
n+1) = b(ηn+1, wn+1,φ

h
n+1)− b(φh

n+1, wn+1, φ
h
n+1)

+ b(en+1, sn+1,φ
h
n+1)− b(ηn+1, en+1, φ

h
n+1) + b(φh

n+1, en+1, φ
h
n+1)

+ b(sn+1, en+1,φ
h
n+1) + b(wh

n+1, ηn+1,φ
h
n+1).

(5.12)

Step 4: On the right side of (5.16), use inequalities (2.1)–(2.3) along with Cauchy-Schwarz inequality, then apply
Young’s inequality.

Step 5: Add up over time steps and apply Gronwall’s Lemma 1 to (5.18) to obtain an error estimate forφh.

Step 6: Compute the error estimates − sh by triangle inequality. The terms containingη are bounded by the
interpolation error estimate of the finite element spaces.

Theorem 4. Suppose that the assumption of 3 holds and in addition

||e||L∞(L2)|e|L∞(L2) → 0, and|e|l2(L2) → 0

as the mesh sizeh → 0. Let(s, q) be a sensitivity strong solution such that

stt, P (∇st), P (∇stt) ∈ L∞(L2), and∇s ∈ l2(L2).

Let es
n = sn − sh

n denote the global error. Assume thates
0 = 0. Then, the approximated sensitivitysh

n is convergent
and there is a constantC∗ independent ofα, h, andH such that

max
n=0,...,N

||es
n+1||2 + ∆t

N∑
n=0

||es
n+1||2ν,α + α||P ′(∇es)||2l2(L2) + α∆t||P (∇es

N+1)||

≤ Ch2rB1(ν, α, H) + C∗∆t2B2(ν, α,H) + B3(ν, e),

(5.13)
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where

B1(ν, α,H) =
[
2α + h2(1 + ν + αH−2) + C∗

(
24
ν

+ 5ν + 2να2 +
12
ν

α2H−2

)

+
12
ν

(h2|w|2L∞([0,T ]×Ω) + h2|e|2L∞([0,T ]×Ω) + ||wh||2L∞([0,T ]×Ω))
]
|s|2l2(Hr+1) +

5
ν
||q||2l2(Hr),

B2(ν, α,H) =
3
ν
||stt||2l2(L2) +

12
ν

α2H−2T

[
||p(∇st)||2L∞(L2) +

∆t2

242
||P (∇sttt)||2L∞(L2)

]
,

B3(ν, e) =
12
ν
||e||L∞(L2) · |e|L∞(L2)(||s||2l2(L2) + |s|2l2(L2)) +

5
ν
||P ′(∇e)||2l2(L2).

Proof. Subtracting (4.9) from (4.3) yields the following error equation:

1
∆t

(es
n+1 − es

n, vh) + (sn+1 · ∇wn+1 + wn+1 · ∇sn+1 − sh
n+1 · ∇wh

n+1

− wh
n+1 · ∇sh

n+1, v
h) + (ν + α)(∇es

n+1,∇vh)− α(P (∇es
n), P (∇vh))

− (qn+1 − λh,∇ · vh) = −(P ′(∇wn+1), P ′(∇vh)) + (τn+1, v
h)

(5.14)

for all vh ∈ V h, λh ∈ Qh. For any interpolatioñs, the error is decomposed intoes
n = sn− s̃n−(sh

n− s̃n) = ηn−φh
n.

Takevh = φ̄h
n+1, andλh = q̃n+1 in (5.14). ReplaceP by I−P ′ in the following terms:P (wt,n), P (wttt,n), P (wtt,n),

andP (∇vh). The resulting equation is

1
∆t

(φh
n+1 − φh

n, φh
n+1) + (ν + α)(∇φh

n+1,∇φh
n+1) = α(P (∇φh

n), P (∇φh
n+1))

+
1

∆t
(ηn+1 − ηn, φh

n+1) + b(sn+1, wn+1, φ
h
n+1) + b(wn+1, sn+1, φ

h
n+1)

− b(sh
n+1, w

h
n+1, φ

h
n+1)− b(wh

n+1, s
h
n+1, φ

h
n+1) + (ν + α)(∇ηn+1,∇φh

n+1)

− α(P (∇ηn), P (∇φh
n+1))− (qn+1 − q̃n+1,∇ · φh

n+1) + (P ′(∇en+1), P ′(∇φh
n+1))− (τn+1,φ

h
n+1).

(5.15)

Applying (5.2) and (5.4) to the left side and (5.5) to the first term on the right side of (5.15), then rewriting the trilinear
terms according to (5.12), gives

1
2∆t

(||φh
n+1||2 − ||φh

n||2) + ν||∇φh
n+1||2 + α||P ′(∇φh

n+1)||2 +
α

2
(||P (∇φh

n+1)||2 − ||P (∇φh
n)||2)

≤ 1
∆t

(ηn+1 − ηn, φh
n+1) + b(ηn+1, wn+1, φ

h
n+1)− b(φh

n+1, wn+1, φ
h
n+1)

+ b(en+1, sn+1,φ
h
n+1)− b(ηn+1, en+1, φ

h
n+1) + b(φh

n+1, en+1, φ
h
n+1)

+ b(sn+1, en+1,φ
h
n+1) + b(wh

n+1,ηn+1,φ
h
n+1) + (ν + α)(∇ηn+1,∇φh

n+1)

− α(P (∇ηn), P (∇φh
n+1))− (qn+1 − q̃n+1,∇ · φh

n+1) + (P ′(∇en+1), P ′(∇φh
n+1))− (τn+1,φ

h
n+1).

(5.16)

Technically, we want to bound all the terms on the right-hand side of (5.16). This is done first by the Cauchy-Schwartz
inequality along with inequalities (2.1) to (2.3), then by applying Young’s inequality (see the bounds in the Appendix).
Inserting all the bounds into (5.16) yields
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1
2∆t

(||φh
n+1||2 − ||φh

n||2) +
ν

2
||∇φh

n+1||2 + α||P ′(∇φh
n+1)||2 +

α

2
(||P (∇φh

n+1)||2 − ||P (∇φh
n)||2)

≤ 6
ν

h2r(|sn+1|2r+1 + |sn|2r+1) +
6
ν

h2(r+1)|sn+1|2r+1 · |w|L∞([0,T ]×Ω)

+
6
ν
||en+1|| · |en+1| · ||sn+1||2 +

6
ν

h2r|sn+1|2r+1||wh||2L∞([0,T ]×Ω) +
5ν

2
h2r|sn+1|2r+1

+ α2 5
2ν

h2r|sn+1|2r+1 + α2 6
ν

H−2h2r|sn|2r+1 +
5
2ν

h2r|qn+1|2r +
5
2ν
||P ′(∇en+1)||2

+
6
ν

∆t2

4
||stt(tn+1)||2 + α2 6

ν
H−2∆t2||P (∇st(tn+ 1

2
))||2

+ α2 6
ν

H−2 ∆t4

242
||P (∇sttt(tn+ 1

2
))||2 +

1
2

(
153

18ν3
+ ν

)
||φh

n+1||2.

(5.17)

In the next step, multiplying by∆t and summing from 0 toN gives

||φh
N+1||2 + ∆t

N∑
n=0

||φh
n+1||2ν,α + α||P ′(∇φh)||2l2(L2) + α∆t||P (∇φh

N+1)||2

≤ ||φh
0 ||2 + α∆t||P (∇φh

0 )||2 + h2r|s|2l2(Hr+1)

(
24
ν

+ 5ν + 5α2ν +
12
ν

α2H−2

+
12
ν

h2
[
|w|2L∞([0,T ]×Ω) + |e|2L∞([0,T ]×Ω)

]
+

12
ν
||wh||2L∞([0,T ]×Ω)

)
+

12
ν
||e||L∞(L2)

· |e|L∞(L2)(||s||2l2(L2) + |s|2l2(L2)) +
5
ν

(h2r||q||2l2(Hr) + ||P ′(∇e)||2l2(L2))

+
3
ν

∆t2||stt||2l2(L2) +
12
ν

α2H−2∆t2T ||P (∇st)||2L∞(L2) +
12
ν

α2H−2 ∆t4

242
T ||P (∇sttt)||2L∞(L2)

+
(

153

18ν3
+ ν

)
||φh||2l2(L2)

(5.18)

Define

|||u|||2 = ||uN+1||2 + ∆t

N∑
n=0

||un+1||2ν,α + α||P ′(∇u)||2l2(L2) + α∆t||P (∇uN+1)||2

and let

C∗ = exp
{

T

(
153

18ν3
+ ν

)}
.

The result is obtained by applying Gronwall’s inequality and the fact that|||e|||2 ≤ |||η|||2 + |||φh|||2.

Corollary 5. The optimal rate of convergence for the left-hand side of (5.10) is obtained with the choice of0 ≤ α =
ha ≤ ∆t, with a > 0, andh ≤ H = hb < 1 for b < 1. The error estimate becomesO(hr + ∆t).

Proof. See [24].

Corollary 6. Under the assumption of Corollary 5, the rate of convergence for the left-hand side of (5.13) isO(hr +
ha−b∆t + ∆t), whereb ≤ a.

Proof. To find the rate of convergence for the error estimate in (5.13), we compute the rate of convergence for
B1(ν, α, H),B2(ν, α,H), andB3(ν, e). By Corollary 5, given0 ≤ α = ha ≤ ∆t, with a > 0, andh ≤ H = hb < 1
for b < 1, B3(ν, e) is O(hr + ∆t).
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LetB1(ν, α,H), andB2(ν,α,H) be of orderhk1 andhk2∆tk3 + ∆tk4 , respectively, withk1, k2, k3, k4 ≥ 0. The
coefficients ofB2(ν,α,H) imply thatk3 = k4 = 0 and balancingα andH in α2H−2 = h2(a−b) enforces a condition
on selectinga andb such thatb ≤ a. ThusB2(ν, α,H) is of orderha−b.

In B1(ν, α,H), αH−2h2 andα2H−2 are the key coefficients. ConsideringαH−2h2 = ha−2b+2 andα2H−2 =
h2(a−b), they are equal ifa = 2. For a < 2, α2H−2 = h2(a−b) has the smallest power and fora > 2, αH−2h2 =
ha−2b+2. In all the cases,B1(ν, α,H) yields an order ofhk1 with k ≥ 0. Therefore, the right-hand side of (5.13)
converges with a least rate ofO(hr + ha−b∆t + ∆t).

Remark 7. An important conclusion of Theorem 4 is that the convergence of approximated sensitivity depends on
the convergence of approximated eddy viscosity velocitywh. Therefore, an accurate sensitivity requires the sensitivity
computations to be carried out using a finer mesh. This is a computational challenge when obtaining a good velocity
approximation becomes difficult for small values of viscosity. In [26], the authors show this fact using a different
approach by analyzing the boundary layers. Achieving the optimal rate of convergence for the sensitivity as stated in
Corollary 6 may not be computationally feasible in cases of very small viscosities.

6. NUMERICAL RESULTS

In this section, our numerical studies illustrate the convergence results for the fully discrete sensitivity equation in
(4.9) and two applications of the sensitivity computation for the subgrid EVM given by (1.1), one in assessing the
uncertainty of the approximated solution due to the variation of the eddy viscosity parameter and the second one
in improving the flow functionals. In these studies, we have used the two-dimensional cavity problem and the two-
dimensional flow around a cylinder as our test problems.

Section 6.1 presents numerical studies in support of the error estimates and the convergence rate stated in Theo-
rem 4 and Corollary 6. The experiment contained in Section 6.2 provides an example for numerically specifying an
interval of reliability which indicates a range of values of the eddy viscosity parameter that yield the most reliable
approximation for a given problem. The computations in Section 6.3 present a more accurate estimation of the drag
values in the classical example of flow around a cylinder by using the flow variable sensitivities as the first-order
correction terms in the Taylor expansion of flow variables.

Numerical results contained in this paper are obtained by choosing the finite element spacesXh, Qh, andLH

to be spaces of piecewise polynomials of degree 2, piecewise linear polynomials, and piecewise constant functions,
respectively. This set of finite element spaces ensures the stability of the computedL2-orthogonal projectionP from
the system of (4.1) at each time step. Furthermore, the inequality (5.1) holds forP . All calculations presented in this
paper were carried out using the software package FreeFEM++; see [37] for details and examples.

6.1 Convergence Results

Convergence results for the numerical scheme in (4.9) are given in this section. These results are shown using the
two-dimensional cavity problem for the spatial convergence and the two-dimensional flow in a channel with cylinder
for the convergence in time. In [24], the authors provide the analysis and numerical computations of the scheme in
(4.8) for the approximated velocitywh.

6.1.1 Convergence in Space

The numerical experiment is performed on the two-dimensional cavity problem [38]; see also [16] for a comparison
of the sensitivity computations for the cavity problem via two different strategies. We numerically solve Eq. (1.1) with
the domain defined byΩ = [0, 1]×[0, 1]. The upper boundary moves with the velocityw(t, x, y) = [16x2(1−x)2, 0]T .
The initial condition is chosen to bew(0, x, y) = (3y2 − 2y, 0)T in Ω. It is clear that since the initial and boundary
conditions forw do not depend onα, we have zero initial and boundary condition for sensitivitys.

The sensitivitysh is computed at each time stepti using the scheme in (4.9) through computingwh(ti+1) from
(4.8). We use the numerical approximation obtained with a mesh sizeh∗ = 1/49 and a coarse mesh sizeH∗ = 1/7
as the sensitivity true solution of (4.9). For the error computations, a sequence of grids is generated with the structure
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(h,H)k =
(

1
k , 1√

k

)
, for k = 3, 4, 5, 6. These computations are obtained using a fixed eddy viscosity parameter of

α = 0.05 and the uniform time step∆t = 0.001 for 1000 steps. Given a grid size, denoted byh, the error in the
calculation of{sh

n}N
n=1 is defined as follows:

E(h) = ||sh − sh∗ ||L∞(L2).

Selecting different values forν = 1, 0.5, 0.25, 0.125 in (4.8) and (4.9), the error computations for||es||L∞(L2) are
given in Fig. 1. According to data shown in this figure,||es||L∞(L2) decreases with the mesh refinement for allν, but
its value is larger for smaller values of viscosity.

The convergence rate of the error is determined by calculating the exponenta in the expression
(

h1

h2

)a

=
E(h1)
E(h2)

,

whereh1 = 1/25 andh2 = 1/36. Mathematically, this is equivalent to measuring the slope of the line connecting the
leftmost two points in the log-log error plots shown in Fig. 1. The rate coefficienta for different viscosity values are
listed in Table 1. Note that in this experimentα = 0.05 ≈ h0.835975 andH = h0.5. Thus, with our choice of spaces
according to Corollary 6, we expect a rate of convergence between 0.335975 and 2 for allν.

6.1.2 Convergence in Time

For this numerical experiment, we consider the standard test problem of two-dimensional flow in a channel around
a cylinder. The geometry is indicated in Fig. 2. The channel height and width are, respectively, 0.41 and 2.2 m. The
cylinder, denoted byD, has radius 0.05 m, and it has been placed in the geometry so that its center is given by the
coordinates(0.2, 0.2).

TABLE 1: Rate of convergence for dif-
ferent values ofν

ν Rate of convergencea
1 1.253

0.5 1.196
0.25 1.280
0.125 1.549
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FIG. 1: Sensitivity spatial error and its log-log plot.
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inlet outlet

D

(0,0.41)

(0,0) (2.2,0)

(2.2,0.41)

FIG. 2: Geometry of two-dimensional flow around cylinder.

We seek to generate a numerical approximation to the solution of (1.1) where for0 ≤ t ≤ 1, the inflow conditions
are given below and represent a parabolic inflow that is periodic in time:

w1(t, 0, y) =
6

(0.41)2
y(0.41− y) sin(πt) (6.1)

w2(t, 0, y) = 0.

A free condition is used for the outflow boundary condition, and the remaining boundary and initial conditions are
given by

w1(t, x, 0) = w2(t, x, 0) = 0

w1(t, x, 0.41) = w2(t, x, 0.41) = 0

w1(t, x, y) |∂D= w2(t, x, y) |∂D= 0

w1(0, x, y) = w2(0, x, y) = 0.

For the triangulation of the domain in Fig. 2, note that each mesh is nonuniform in the sense that the mesh is finer
around the cylinderD. A given mesh is constructed using a maximum size, denoted byhmax, for the sides of the
channel and a minimum size, denoted byhmin, for the boundary ofD. We identify these maximum and minimum
sizes of the mesh using the ordered pair(hmax, hmin). For the numerical computation of the projection operator, the
applied coarse mesh has the same structure and is always chosen as(

√
hmax,

√
hmin). Figure 3 displays an example

of a mesh of size(1/36, 1/49).
In this experiment, the spatial grid size is set to be(1/49, 1/64). The computations are done using uniform time

steps∆t = 0.1, 0.02, 0.01, 0.002 and the errors are compared to the fixed time step∆t = 0.001 for the final time
T = 1. The convergence in time is tested for different values of viscosityν = 1, 0.1, 0.01, 0.001 with α = 0.025. The
sensitivity error inl2(L2) for the scheme in (4.9) along with its corresponding log-log plot are displayed in Fig. 4.
This figure shows that the sensitivity components for all viscosity values converge as the time steps are chosen smaller
and a convergence rate of about 0.8 is obtained forν < 1.

6.2 The Interval of Reliability

The aim of this numerical study is to show that the flow sensitivity obtained from (4.9) can be used to quantify the
reliability of a flow solution computed using (4.8) for different values ofα. The idea is simply based on the following
difference quotient for the sensitivity:

s =
∂w

∂α
≈ w(α)− w(0)

α
. (6.2)

FIG. 3: Mesh in a channel of size(1/36, 1/49).
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FIG. 4: Sensitivity error in time and its log-log plot.

Consideringw as an implicit function ofα, w(0) indicates the true solution of Navier-Stokes equations whilew(α)
for α > 0 denotes the corresponding EVM approximation. According to (6.2), the EVM solution is an accurate ap-
proximation to the Navier-Stokes solution when||w(α)−w(0)|| is small, and the accuracy of the EVM approximation
can be estimated by measuringα||s||. As noted in Section 1, the sensitivity calculation can be coupled with that of the
original EVM simulation. Hence, one can compute a model simulation with a given set of parameters and, for a nom-
inal extra cost, the sensitivity computation can be obtained and a quantitative measure of reliability can be computed.
This is illustrated for a test problem in the following paragraphs.

The test problem used in this numerical study is the two-dimensional cavity problem defined on a unit square
with the same boundary and initial conditions as described in Section 6.1.1. All computations are carried out with
a fixed mesh sizeh = 1/36 and coarse mesh sizeH = 1/6, and the uniform step∆t = 0.001 for 1000 steps.
Table 2 presentsα||s||L∞(0,T ;L2) values for variations of the parameterα and different flow viscosities corresponding
to Reynolds numbers of 1000, 5000, 10,000, and 50,000. This table demonstrates that the large eddy velocityw is
highly sensitive with respect to the small values ofα, i.e.,α ≤ 0.025, for all the tested Reynolds numbers and there is
a large increase in the sensitivity values asα takes on values closer to0 (see Fig. 5).

Note that by selecting large values for the eddy viscosity parameterα, e.g., larger or equal to 0.25, all the velocity
scales that are less than or equal to the parameterα are removed from the flow structure. Hence, an approximated
EVM flow solution corresponding to large values ofα is not considered to be a reliable approximation to a solution
of the Navier-Stokes model because too much of the small-scale structure has been lost. This situation is especially
tenuous for the case of high Reynolds numbers where the velocity contains a large number of small scales. Therefore,

TABLE 2: Values ofα||s||L∞(0,T ;L2) at the final time

α Re= 1000 Re= 5000 Re= 10, 000 Re= 50, 000
0.75 0.085492 0.0855515 0.0855589 0.0855649
0.5 0.0815713 0.0816575 0.0816682 0.0816769
0.25 0.0773889 0.0775531 0.0775736 0.0775901
0.075 0.0774764 0.0780792 0.0781552 0.0782162
0.05 0.0866153 0.08830347 0.0882171 0.0883635
0.025 3.03762 3.63664 3.72093 3.79002
0.0075 4355 8156.78 8867.12 9487.9
0.005 31871.8 76437.2 85985.1 94611.4
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IsoValue
-0.0182233
-0.00936173
-0.000500141
0.00836145
0.017223

0.0260846
0.0349462
0.0438078
0.0526694
0.061531
0.0703926
0.0792542
0.0881158
0.0969774
0.105839
0.114701
0.123562
0.132424
0.141285
0.150147

IsoValue
-0.0108047
0.0127963
0.0363974
0.0599984
0.0835995

0.1072
0.130802
0.154403
0.178004
0.201605
0.225206
0.248807
0.272408
0.296009
0.31961
0.343211
0.366812
0.390413
0.414014
0.437615

FIG. 5: Sensitivity att = 0.01 and0.1, respectively.

the practitioner must seek to find the optimal balance between choosing a value ofα that is “small enough” to provide
a reliable approximation to the Navier-Stokes flow while choosing a value ofα that is “large enough” so that the
computation of the large eddy velocityw is relatively insensitive to small changes inα. That is, we seek to identify a
range of values for the interval of reliability so that bothα andα||s|| are small. To determine the interval of reliability,
one can use (6.2) along with the Taylor expansion,

w(0) = w(α)− αs + O(α2). (6.3)

One first obtains a number of flow and sensitivity approximations for a variety of values ofα as seen in Table 2. For
the calculations of the current example, a reliable solution is obtained forα values whenα||s|| from (6.2) is minimized
andO(α2) in (6.3) is of order less than 0.01.

Table 2 suggests that an approximateinterval of reliability for this model problem is [0.05,0.075]. That is, forα

in the interval [0.05,0.075], the approximated flow response using the EVM (4.8) is a reliable approximation to the
Navier-Stokes flow for the given Reynolds numbers in this experiment.

6.3 Improving Flow Functionals

LetJ(w(0)) = J(u) be a flow functional. Assume thatw(0) is extremely computationally expensive to obtain directly,
and one would like to compute a less expensive approximation. Then, expandingJ(u) around a nonzeroα implies
that

J(u) ≈ J(w(α))− αJ ′(w(α)) · s. (6.4)

Notice that for linear functionals,J ′ = J ; therefore, the approximation (6.4) is rewritten as

J(u, p) ≈ J(w(α), p(α))− αJ(s, q) = J(w − αs, p− αq). (6.5)

This idea was proposed by Anitescu and Layton for LES models and was tested on the Smagorinsky model in [26].
The lift and drag functional for Navier-Stokes equations is given by

J(u, p) =
∫

D

n̂ · (pI − 2ν∇su) · âds, (6.6)
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wheren̂ denotes the normal vector on the cylinder boundaryD directing into the channel,∇su presents the deforma-
tion tensor and is1/2(∇u +∇uT ), the unit vector̂a in the positive direction ofx axis or negative direction ofy axis
yields the drag or lift flow functional.

The computations in this experiment are carried out using the two-dimensional flow around a cylinder given in
Section 6.1.2. The reference value of drag for this test problem is obtained by performing the direct numerical solution
(DNS) method to a uniform fine mesh of size(1/100, 1/121) for 0 ≤ t ≤ 4.

Table 3 indicates the reference values of maximum drag, and the error in its estimation using the approximated
large eddy velocity and pressure(w, p) and(w − αs, p − αq) in (6.6) for different values ofν. In this experiment,
the approximated flow variables and their sensitivities are obtained from (4.8) and (4.9) withα = 0.00125 and a
mesh size of(1/49, 1/64). This table presents more accurate drag values by(w−αs, p−αq) for all ν, especially for
ν ≤ 0.01.

Examining the norm of the sensitivity quantities for a range of values ofν in Table 4, one observes that the norm
of the sensitivity is negligible forν ≥ 0.1. Therefore, the flow is insensitive to small changes inν over that range of
values. This is also reflected in Table 3, as we see that the computed drag values using(w − αs, p − αq) show only
a small improvement in comparison to the ones computed using(w, p) whenν ≥ 0.1 . However, forν ≤ 0.01, the
errors incurred by using(w − αs, p− αq) improve (or decrease) by a full order of magnitude. According to Table 4,
for small values ofν, i.e.,ν ≤ 0.01, the flow becomes more sensitive, and using sensitivity information improves the
estimated values of the drag functional significantly.

Note that this type of information can also be obtained graphically, and the reduction of error that one sees by using
sensitivity information error can fluctuate depending on the boundary and initial conditions as well as the time at which
one examines the errors. For this particular model problem, we present a few graphical representations of error that
exhibit such fluctuations. A comparison between the error estimates of drag values using(w, p) and(w−αs, p−αq)
at timeT =1, 2, 3, and 4 for different values ofν is shown in Figs. 6 and 7. For the particular boundary and initial
conditions in this example, note that the maximum value of drag occurs at timeT = 2, and the drag values atT = 4
are very small since the inflow vanishes at this specific time. Hence, the amount of improvement in flow functional
estimation that one obtains using the sensitivity information can fluctuate over the range of parameter values as well
as over the time interval of interest. In particular, reductions of error are the most significant where the sensitivities
are larger than the norm. Here, that corresponds toν ≤ 0.01. This is of course a crude estimation in the sense that we
have only examined a small number of parameter values between10−4 and1. However, even the limited information

TABLE 3: Maximum drag values and the errors

Max. drag Error using Error using
ν(Re) J(u, p) |J(u, p)− J(w, p)| |J(u, p)− J(w − αs, p− αq)|
1 (1) 63.7703 0.4037 0.3702

0.1 (10) 41.1958 0.3628 0.3555
0.01 (100) 36.0677 0.389 0.0152

0.001 (1000) 35.29035 0.28095 0.02095
0.0001 (10,000) 35.1186 0.4354 0.0154

TABLE 4: Sensitivity for different values ofν

ν(Re) α||s||L∞(0,T ;L2)

1 (1) 7.19057× 10−6

0.1 (10) 2.88244× 10−4

0.01 (100) 0.00483735
0.001 (1000) 0.0155576

0.0001 (10,000) 0.0201101
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FIG. 6: Drag error estimates atT = 1 and 2.
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FIG. 7: Drag error estimates atT = 3 and 4.

provided by such an experiment provide beneficial insight as to when the EVM is a reliable model to use within the
framework of an optimal design process.

Note that the sensitivity information used here can be extracted in a very inexpensive manner once the numerical
method for (4.8) is constructed. The incorporation of the sensitivity equation in (4.9) into a numerical algorithm
that computes both the eddy velocities and their sensitivities is very straightforward as the bulk of the work for the
computation is in the implementation of Eq. (4.8). Once that is accomplished, computations for Eq. (4.9) are easily
added since all of the data structures and projection calculations are virtually the same or very similar.

7. CONCLUDING REMARKS

In this paper, we have developed and analyzed a numerical method for simulating an eddy viscosity model and its
corresponding sensitivity with respect to the eddy viscosity parameter. The method is a first-order implicit-explicit
time-stepping method. The fully discrete approximations are constructed for velocity and its sensitivity utilizing the
finite element method in space. We provided the optimal rate of convergence for these estimations using piecewise
polynomial functions of degreer. Once the numerical algorithm for solving the EVM is implemented, the sensitivity
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calculations can be appended to it for a nominal amount of effort. Convergence studies for both time and space were
included for standard test problems. Subsequent numerical experiments illustrate that the sensitivity calculations are
quite useful in quantifying the uncertainty of model errors incurred by using the EVM as an approximation to the
full-blown Navier-Stokes model. In addition, the sensitivity information is shown to provide increased accuracy in
flow functionals for a relatively inexpensive cost of the sensitivity calculation. This increase in accuracy may also lead
to a more efficient optimal design process.
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APPENDIX A.

In the process of proving Theorem 4, assign the terms on the right-hand side of (5.16) byT1, T2, ..., T16. Note that
the local truncation error in (5.16) consists of three terms as shown in (5.11) and hereT14, T15, andT16 are their
corresponding terms. To bound these terms, we first use Cauchy-Schwarz inequality on all terms. In addition, assump-
tions (2.1)–(2.3) were used onT1, T2, T5, T8, T9, T10, T11, andT12 and the inequality (5.1) was applied in bounding
T11, T15, andT16. The final bounds are obtained by applying the Young’s inequality.

T1 ≤ ||ηn+1 − ηn

∆t
|| · ||φh

n+1|| ≤ ||ηt||L∞(L2) · ||φh
n+1|| ≤ a1

1
∆t

2

h2(r+1)(|sn+1|2r+1 + |sn|2r+1) + b1||φh
n+1||2

T2 ≤ ||ηn+1|| · |w|L∞([0,T ]×Ω) · ||φh
n+1|| ≤ a2h

2(r+1)|sn+1|2r+1 · |w|2L∞([0,T ]×Ω) + b2||φh
n+1||2

T3 ≤ ||φh
n+1||1/2 · |φh

n+1|3/2 · |wn+1| ≤ a3|wn+1|4 · ||φh
n+1||2 + b3|φh

n+1|2

T4 ≤ ||en+1||1/2 · |en+1|1/2 · |sn+1| · ||φh
n+1|| ≤ a4||en+1|| · |en+1| · |sn+1|2 + b4||φh

n+1||2

T5 ≤ ||ηn+1|| · |e|L∞([0,T ]×Ω) · ||φh
n+1|| ≤ a5h

2(r+1)|sn+1|2r+1 · |e|2L∞([0,T ]×Ω) + b5||φh
n+1||2

T6 ≤ ||en+1||1/2 · |en+1|1/2 · ||φh
n+1||2 ≤ a6||φh

n+1||2

T7 ≤ ||en+1||1/2 · |en+1|1/2 · ||sn+1|| · ||φh
n+1|| ≤ a7||en+1|| · |en+1| · ||sn+1||2 + b7||φh

n+1||2

T8 ≤ |ηn+1| · ||wh||L∞([0,T ]×Ω) · ||φh
n+1|| ≤ a8h

2(r+1)|sn+1|2r+1 · ||wh||2L∞([0,T ]×Ω) + b8||φh
n+1||2

T9 ≤ ν|ηn+1| · |φh
n+1| ≤ a9h

2r|sn+1|2r+1 + b9|φh
n+1|2

T10 ≤ α|ηn+1| · |φh
n+1| ≤ a10h

2r|sn+1|2r+1 + b10|φh
n+1|2

T11 ≤ α||P (∇ηn)|| · ||P (∇φh
n+1)|| ≤ αH−1||P (∇ηn)|| · ||φh

n+1|| ≤ a11H
−2h2r|sn|2r+1 + b11||φh

n+1||2

T12 ≤
√

2||qn+1 − q̃n+1|| · |φh
n+1| ≤ a12h

2r|qn+1|2r + b12|φh
n+1|2

T13 ≤ ||P ′(∇en+1)|| · |φh
n+1| ≤ a13||P ′(∇en+1)||2 + b13|φh

n+1|2

T14 ≤ ||st(tn+1)− sn+1 − sn

∆t
|| · ||φh

n+1|| ≤
∆t

2
||stt(tn+1)|| · ||φh

n+1|| ≤ a14
∆t2

4
||stt(tn+1)||2 + b14||φh

n+1||2

T15 ≤ α∆t||P (∇st(tn+ 1
2
))|| · ||P (∇φh

n+1)|| ≤ αH−1∆t||P (∇st(tn+ 1
2
))|| · ||φh

n+1||

≤ a15H
−2∆t2||P (∇st(tn+ 1

2
))||2 + b15||φh

n+1||2

T16 ≤ α∆t||P
(
∇st(tn+ 1

2
)− sn+1 − sn

∆t

)
|| · ||P (∇φh

n+1)|| ≤ αH−1 ∆t2

24
||P (sttt(tn+ 1

2
))|| · ||φh

n+1||

≤ a16H
−2 ∆t4

242
||P (sttt(tn+ 1

2
))||2 + b16||φh

n+1||.

Note that for the bound onT6, we assume that||e||L∞(L2)|e|L∞(L2) can be bounded by a small number for a small
h. The coefficientsai andbi for i = 1, 2, ..., 16 are selected as follows.
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TABLE A.5: Coefficientsai andbi

i ai bi

1 6/ν ν/12
2 6/ν ν/24
3 153/32ν3 ν/10
4 6/ν ν/24
5 6/ν ν/24
6 ν/24 −
7 6/ν ν/24
8 6/ν ν/24

i ai bi

9 5/2ν ν/10
10 α2(5/2ν) ν/10
11 α2(6/ν) ν/24
12 5/2ν ν/10
13 5/2ν ν/10
14 6/ν ν/24
15 α2(6/ν) ν/24
16 α2(6/ν) ν/24

Volume 3, Number 5, 2013


