Suscripción a Biblioteca: Guest
Página principal de la Biblioteca Digital de ICHMT Año actual Archivos Comité Ejecutivo Centro Internacional de Transferencia de Calor y Masa

Turbulence structure in a rapidly accelerating channel flow

DOI: 10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.530
pages 480-485

Mehdi Seddighi
School of Engineering, University of Aberdeen, Aberdeen AB24 3UE; Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield,S1 3JD, UK; School of Engineering, Technology and Maritime Operations, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom

S. He
School of Engineering and Physical Sciences, University of Aberdeen, Aberdeen AB24 3UE; Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield,S1 3JD, UK

Sinopsis

Direct Numerical Simulations of a turbulent channel flow subjected to mild and rapid temporal accelerations are carried out. The flow structures and some turbulent statistics obtained for the two flow excursions are compared. The results show elongation of streaks in the streamwise direction during the earlier stage of the ramp. A significant role of interaction of low-speed streaks and vortical structures is seen during this period. The prominent influence of ramp rate in the flow behavior is reflected in the big difference of friction coefficients in the rapid and the slower acceleration cases.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH