Suscripción a Biblioteca: Guest
International Journal of Fluid Mechanics Research

Publicado 6 números por año

ISSN Imprimir: 2152-5102

ISSN En Línea: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

PRESSURE LOSSES FOR TURBULENT FLOW THROUGH BENDS IN SERIES

Volumen 45, Edición 2, 2018, pp. 105-128
DOI: 10.1615/InterJFluidMechRes.2018019615
Get accessGet access

SINOPSIS

The pressure loss caused by a single isolated bend, which receives a fully developed flow and allows the flow to return to a fully developed state in its downstream tangent, is well documented and understood. However, when two or more bends are separated by a length insufficient to restore fully developed flow, the truncation of the pressure loss occurring downstream of the first bend and the distorted flow received by the second bend prevent the extrapolated use of singlebend data for the two-bend case. Using numerical simulation, a comprehensive investigation of the pressure losses caused by two-bend combinations was performed. Two in-plane bend combinations, having a "U" and "S" shape, and an out-of-plane bend combination were examined. For each bend combination, simulations were performed for many separating lengths ranging from zero to 100 pipe diameters for Reynolds numbers of 2·105, 5·104, and 1·104. For the "U" combination, the two-bend pressure loss decreased monotonically as the separating distance decreased. For the "S" and out-of-plane configurations, the pressure loss was at a minimum when the separating length was between three and five pipe diameters. This is consistent with the existing results from the highest quality experiments on the topic. In addition to results, the present work presents a fundamentals-based comprehensive explanation of the observed pressure loss trends using dimensionless quantities to measure the distortion of the flow at cross sections within the bend combination.

CITADO POR
  1. Gorman J. M., Sparrow E. M., Smith C. J., Ghosh A., Abraham J. P., Daneshfaraz R., Rezazadeh Joudi A., In-bend pressure drop and post-bend heat transfer for a bend with a partial blockage at its inlet, Numerical Heat Transfer, Part A: Applications, 73, 11, 2018. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain