Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Imprimir: 2152-5102
ISSN En Línea: 2152-5110

Volumes:
Volumen 47, 2020 Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018021508
pages 101-112

CFD MODELING OF THE INTERACTION BETWEEN AN OBLIQUE WALL JET AND A PARALLEL OFFSET JET

Nidhal Hnaien
Unit of Metrology and Energy Systems, National Engineering School of Monastir, University of Monastir, Tunisia
Saloua Marzouk
Unit of Metrology and Energy Systems, National Engineering School of Monastir, University of Monastir, Tunisia
Lioua Kolsi
Unit of Metrology and Energy Systems, National Engineering School of Monastir, University of Monastir, Tunisia; College of Engineering, Mechanical Engineering Department, Haïl University, Saudi Arabia
Hatem Gasmi
College of Engineering, Civil Engineering Department, Haïl University, Saudi Arabia
Habib Ben Aissia
National School of Engineers of Monastir, Metrology Research Unit and Energy Systems, 5000 Monastir, Tunisia
Jacques Jay
Thermal Science Centre of Lyon (CETHIL - UMR CNRS 5008) National Institute of Applied Sciences of Lyon Lyon, France

SINOPSIS

This work is devoted to a numerical investigation on turbulent flow combining an oblique wall jet and an offset jet. This combination will be denoted the wall offset jet. Several turbulence models were tested in the present study, such as the standard k-ω, SST k-ω, standard k-ε, RNG k-ε, and the realizable k-ε models. A parametric study was also performed to pick out the wall inclination β effect on the longitudinal and transverse positions of the merge points (MP), combined point (CP), upper vortex center (UVC), and lower vortex center (LVC). Analyzing the numerical results shows that increasing the wall inclination results in longitudinal displacement of the MP, CP, UVC, and LVC further downstream along the longitudinal direction reporting acceleration on the merging process launch. Furthermore, for higher wall inclination values, these characteristics points transversally deviate toward the oblique wall.


Articles with similar content:

Comparison of Turbulence Models in Simulating a Cruciform Impinging Jet on a Flat Wall
International Heat Transfer Conference 15, Vol.36, 2014, issue
Amina Meslem, Kodjovi Sodjavi, Ilinca Nastase, Florin Bode
Simulations of shock wave/turbulent boundary layer interaction with upstream micro vortex generators
TSFP DIGITAL LIBRARY ONLINE, Vol.10, 2017, issue
Stephane Jamme, Laurent Joly, Julien Bodart, Arnaud Grebert
THE EFFECT OF A FLAT-PLATE-TYPE OBSTACLE ON A THIN LIQUID FILM FLOW
Dynamics of Two-Phase Flows, Vol.1, 1988, issue
T. Fukano, K. Kutaragi, T. Tanaka, M. Kanamori
MODELLING OF THE OPPOSING MIXED CONVECTION HEAT TRANSFER IN A ONE-SIDE HEATED VERTICAL FLAT CHANNEL IN THE TRANSITION REGION
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Povilas Poskas, Arunas Sirvydas, Robertas Poskas
Flat Plate Film Cooling Performance Predictions by RANS Turbulence Models
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
S. Inanli, Tuba Okutucu-Özyurt, O. Uzol, I. Gorgulu