Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimir: 2152-5102
ISSN En Línea: 2152-5110

Volumes:
Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v27.i2-4.120
pages 331-362

Numerical Analysis of Multiphase Mixing - Comparison of First and Second Order Accurate Schemes

M. Leskovar
"Jozef Stefan" Institute, Slovenia
Jure Marn
University of Maribor, Slovenia
Borut Mavko
Reactor Engineering Division, "Jozef Stefan" Institute, Jamova 39, 1000 Ljubljana, SLOVENIA

SINOPSIS

During a severe reactor accident following core meltdown when the molten fuel comes into contact with the coolant water a steam explosion may occur. The steam explosion can be divided into more stages. The first, premixing stage is important since it gives the initial conditions of the possible steam explosion and determines the maximum quantity of melt, which might be then involved into the explosion. To investigate the mixing process associated with the melt penetration a large number of premixing codes has been developed.
The purpose of this work is to analyze the influence of first and second order accurate numerical schemes on the premixing phase simulation results and to find out if a probabilistic treatment of some terms in the multiphase flow equations introduces any advantages. For performing this kind of analysis the simple premixing code ESE has been developed.
With ESE a number of premixing experiments performed at the Oxford University and at the QUEOS facility at Forschungszentrum Karlsruhe has been simulated using the first order accurate upwind method and the second order accurate high-resolution method. The performed analysis showed that the results obtained with the first and second accurate numerical schemes differ and that the probabilistic approach has an almost negligible effect on the simulation results.


Articles with similar content:

ESTIMATION OF COREMELT EVENT TREES
ICHMT DIGITAL LIBRARY ONLINE, Vol.9, 1995, issue
H. Plank, H. Weisshaupl
FLOW AND HEAT TRANSFER IN PRESSURIZED WATER REACTOR REFLOOD
Multiphase Science and Technology, Vol.22, 2010, issue 4
S. P. Walker, Geoffrey F. Hewitt, Colin P. Hale, Y. J. Zeng
Accident Progression and Source Term Analyses for LWR Severe Accidents - Japanese Activities and Progress -
ICHMT DIGITAL LIBRARY ONLINE, Vol.9, 1995, issue
O. Furukawa, N. Tanaka, M. Kajimoto, Y. Takechi, M. Hirano
TWO-PHASEWATER HAMMER SIMULATION WITH THE CATHARE CODE
Multiphase Science and Technology, Vol.23, 2011, issue 1
P. Nika, G. Serre
BEST ESTIMATE THERMAL-HYDRAULIC ANALYSIS OF LOSS OF COOLANT ACCIDENTS
Advances in Heat Transfer Engineering, Vol.1, 2003, issue
Rolandas Urbonas, Algirdas Kaliatka, Mindaugas Vaisnoras