Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimir: 2152-5102
ISSN En Línea: 2152-5110

Volumen 47, 2020 Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018021520
pages 229-238


Etim S. Udoetok
Mechanical Engineering Department, University of Uyo, Uyo, Akwa Ibom, Nigeria


The accurate prediction of friction loss is very important in pipeline engineering, where the use of water lubrication for the transport of heavy crude oil is gaining ground. Theoretical analysis of pressure drop in liquid–liquid core–annular fluid flow is used to derive an expression for the multiphase Reynolds number that can be used in existing single-phase equations to determine the coefficient of friction loss. The multiphase Reynolds number shows that the liquid in contact with the pipe wall dominates the values. Results using the proposed model were compared to published experimental results and other models. The proposed model is more accurate and less complex, and it shades more light on core–annular fluid flow.


  1. Arney, M.S., Bai, R., Guevara, E., Joseph, D.D., and Liu, K., Friction Factor and Holdup Studies for Lubricated Pipelining. I: Experiments and Correlations, Int. J. Multiphase Flow, vol. 19, pp. 1061–1076, 1993.

  2. Arney, M.S., Ribeiro, G.S., Guevara, E., Bai, R., and Joseph, D.D., Cement-Lined Pipes for Water Lubricated Transport of Heavy Oil, Int. J. Multiphase Flow, vol. 22, no. 2, pp. 207–221, 1996.

  3. Bannwart, A.C., Modeling Aspect of Oil-Water Core-Annular Flows, J. Petrol. Sci. Eng., vol. 32, nos. 2-4, pp. 127–143, 2001.

  4. Bannwart, A.W., A Simple Model for Pressure Drop in Horizontal Core Annular Flow, J. Braz. Soc. Mech. Sci., vol. 21, no. 2, pp. 233–244, 1999.

  5. Gosh, S., Mandal, T.K., Das, G., and Das, P.K., Review of Oil Water Core Annular Flow, Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1957–1965, 2009.

  6. Haaland, S.E., Simple and Explicit Formulas for the Friction Factor in Turbulent Flow, ASME J. Fluid Mech., vol. 105, no. 1, pp. 89–90, 1983.

  7. Joseph, D.D. and Renardy, Y.Y., Fundamentals of Two-Fluid Dynamics, Part II: Lubricated Transport, Drops and Miscible Liquids, New York: Springer, 1993.

  8. Joseph, D.D., Chen, K.P., and Renardy, Y.Y., Core-Annular Flows, Annu. Rev. Fluid Mech., vol. 29, pp. 65–90, 1997.

  9. Kolev, N.N., Multiphase Flow Dynamics 1: Fundamentals, Switzerland: Springer, 2015.

  10. Martinez-Palou, R., Mosqueira, M.L., Zapata-Rendon, B., Mar-Juarez, E., Bernal-Huicochea, C., Clavel-Lopez, J.C., and Aburto, J., Transport of Heavy and Extra-Heavy Crude Oil by Pipeline: A Review, J. Petrol. Sci. Eng., vol. 75, nos. 3-4, pp. 274–282, 2011.

  11. Minami, K. and Shoham, O., Transient Two-Phase Flow Behavior in Pipeline—Experiment and Modeling, Int. J. Multiphase Flow, vol. 20, no. 4, pp. 739–752, 1994.

  12. Oliemans, R.V.A. and Ooms, G., Core-Annular Flow of Oil and Water through a Pipeline, in Multiphase Science and Technology, A.K. Nayak, Ed., New York: Begell House, vol. 2, pp. 427–476, 1986.

  13. Oliemans, R.V.A., Ooms, G.,Wu, H.L., and Duijvestijn, A., Core-Annular Oil/Water Flow: The Turbulent-Lubricating-Film Model and Measurements in a 5 cm Pipe Loop, Int. J. Multiphase Flow, vol. 13, no. 1, pp. 23–31, 1987.

  14. Ooms, G., Segal, A., van der Wees, A.J., Meerhoff, R., and Oliemans, R.V.A., A Theoretical Model for Core-Annular Flow of a Very Viscous Core and a Water Annulus through a Horizontal Pipe, Int. J. Multiphase Flow, vol. 10, no. 1, pp. 41–60, 1984.

  15. Rodriguez, O.M.H., Bannwart, A.C., and de Carvalho, C.H.M., Pressure Loss in Core-Annular Flow: Modeling, Experimental Investigation and Full-Scale Experiments, J. Petrol. Sci., vol. 65, nos. 1-2, pp. 67–75, 2009.

  16. Russel, T.W.F. and Charles, M.E., The Effect of Less Viscous Liquid in the Laminar Flow of Two Immiscible Liquids, Can. J. Chem. Eng., vol. 37, no. 1, pp. 18–24, 1959.

  17. Sotgia, G., Tartarini, P., and Stalio, E., Experimental Analysis of Flow Regimes and Pressure Drop Reduction in Oil-Water Mixtures, Int. J. Multiphase Flow, vol. 34, no. 12, pp. 1161–1174, 2008.

  18. Vanegas-Prada, J.W. and Bannwart, A.C., Modeling of Vertical Core-Annular Flows and Application to Heavy Oil Production, ASME J. Energy Resour. Technol., vol. 123, no. 3, pp. 194–199, 2001.

  19. Xu, X., Study on Oil-Water Two-Phase Flow in Horizontal Pipelines, J. Petrol. Sci. Eng., vol. 59, nos. 1-2, pp. 43–58, 2007.

  20. Yusuf, N., Al-Wahaibi, Y., Al-Ajmi, A., Olawale, A.S., and Mohammed, I.A., Effect of Oil Viscosity on Flow Structure and Pressure Gradient in Horizontal Oil-Water Flow, Chem. Eng. Res. Des., vol. 90, no. 8, pp. 1019–1030, 2012.