Suscripción a Biblioteca: Guest
International Journal of Fluid Mechanics Research

Publicado 6 números por año

ISSN Imprimir: 2152-5102

ISSN En Línea: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Simulation of Evaporation from Bare Soil without and with the Soil Surface Seal

Volumen 32, Edición 2, 2005, pp. 214-254
DOI: 10.1615/InterJFluidMechRes.v32.i2.60
Get accessGet access

SINOPSIS

An expression for calculating the evaporation intensity from bare wet soil was derived from a joint consideration of heat and water flow dynamics in adjacent air and soil media. This expression refines well-known theoretical formulae to determine potential evaporation (Penman, Budagovsky etc.). An estimation was performed for the effect of transitional soil processes due to dramatic change in meteorological conditions and physical parameters characterizing soil state. Criteria were found so that if they were obeyed then there was to limitation of evaporation. In case of turf-podsolic soil the duration of the first stage, unsaturated soil water flow were computed at several depths of the water table and initial moisture distributions in the aeration zone. A preliminary estimation was made of effect of soil seal formed due to rainfall on the physical evaporation. It is established that soil compaction because of falling drops can noticeably intensify or reduce outflow from the soil surface. A theoretical analysis was done of evaporation for bare soil and the second and third stages based on a stationary model of consistent heat and water transfer in the system soil-atmosphere (subsurface layer). The effect of thermal, hydrophysical soil properties and meteorological elements on evaporation intensity and thickness of a dried layer was investigated. It was shown that hydraulic conductivity was of decisive value. A boundary condition at the soil surface is found which reflects the peculiarities of water exchange between soil and air media at the stages under consideration. The calculations were performed for five wide-spread soil types.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain