Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Eukaryotic Gene Expression
Factor de Impacto: 2.156 Factor de Impacto de 5 años: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Imprimir: 1045-4403
ISSN En Línea: 2162-6502

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2016018476
pages 19-35

Molecular Mechanisms Underlying the Function Diversity of ArsR Family Metalloregulator

Sai Ren
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
Qiming Li
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
Longxiang Xie
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
Jianping Xie
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China

SINOPSIS

The ArsR family of transcriptional regulators are widespread among microorganisms and are involved in various important cellular events, such as metal ion homeostasis, biofilm formation, primary and secondary metabolism, symbiosis, response to adverse condition, and virulence. Its N-terminus contains a winged helix-turn-helix DNA-binding domain that can repress or activate transcription by binding to downstream target promoters. With the increasing number of members in this family identified over the past few decades, the ArsR family members have been intensively explored. In this review, we summarize the function of ArsR family of transcriptional regulators and the mechanisms of metal-regulated gene expression.


Articles with similar content:

Human Metallothionein Expression under Normal and Pathological Conditions: Mechanisms of Gene Regulation Based on In silico Promoter Analysis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 4
Pieter De Bleser, Debby Laukens, Claude Cuvelier, Martine De Vos, Anouk Waeytens
Tumor Suppressor Maspin as a Rheostat in HDAC Regulation to Achieve the Fine-Tuning of Epithelial Homeostasis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.22, 2012, issue 3
M. Margarida Bernardo, Shijie Sheng, Sijana Dzinic, Alexander Kaplun
Transcriptional Regulation of Vertebrate Hox Genes during Embryogenesis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.7, 1997, issue 3
Thomas Lufkin
Nuclear Matrix Targeting of Steroid Receptors: Specific Signal Sequences and Acceptor Proteins
Critical Reviews™ in Eukaryotic Gene Expression, Vol.10, 2000, issue 1
Donald B. DeFranco, Jennifer Guerrero
PTHrP Gene Expression in Cancer: Do All Paths Lead to Ets?
Critical Reviews™ in Eukaryotic Gene Expression, Vol.15, 2005, issue 2
John Foley, Thomas J. Rosol, Virgile Richard