Suscripción a Biblioteca: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Publicado 6 números por año

ISSN Imprimir: 1045-4403

ISSN En Línea: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Stem Cell Therapy for Diabetes Mellitus: Recent Progress and Hurdles

Volumen 29, Edición 5, 2019, pp. 471-482
DOI: 10.1615/CritRevEukaryotGeneExpr.2019025723
Get accessGet access

SINOPSIS

Diabetes mellitus (DM) is a devastating metabolic syndrome. Currently, parenteral exogenous insulin is the only therapy available around the world to treat type 1 DM. However, it does not tightly regulate blood glucose levels that ultimately lead to long-term complications. The development of pancreatic transplantation gives some hope in the radical cure of diabetes. A limited number of donors and host immune rejection are two major drawbacks associated with pancreatic transplantation. Stem cells are distinctive cells that can differentiate into any other type of specialized cells. Embryonic stem cells have been studied extensively and proved successful in producing beta cells. The numerous kinds of stem cells, including embryonic stem cells, induced pluripotent stem cells, and adult stem cells, prove to be among the notable candidates to treat DM. However, all stem cell therapies have their own limitations. This review article focuses on the progress and limitations in stem cell research to treat DM.

REFERENCIAS
  1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes Atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Practice. 2011;94(3):311-21.

  2. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Chapter 1: epidemiology of type 1 diabetes. Endocrinol Metabol Clin North Am. 2010;39(3):481-97.

  3. Florez JC. Found in translation: a type 1 diabetes genetic risk score applied to clinical diagnosis. Diabetes Care. 2016;39(3):330-32.

  4. Tomer Y, Dolan LM, Kahaly G, Divers J, D-Agostino RBJ, Imperatore G, Dabelea D, Marcovina S, Black MH, Pihoker C, Hasham A, Hammerstad SS, Greenberg DA, Lotay V, Zhang W, Monti MC, Matheis N. Genome wide identification of new genes and pathways in patients with both autoimmune thyroiditis and type 1 diabetes. J Autoimmun. 2015;60:32-39.

  5. Zhao Y, Scott NA, Quah HS, Krishnamurthy B, Bond F, Loudovaris T, Mannering SI, Kay TW, Thomas HE. Mouse pancreatic beta cells express MHC class II and stimulate CD4+ T cells to proliferate. Eur J Immunol. 2015;45(9):2494-503.

  6. Karter AJ, Laiteerapong N, Chin MH, Moffet HH, Parker MM, Sudore R, Adams AS, Schillinger D, Adler NS, Whitmer RA, Piette JD, Huang ES. Ethnic differences in geriatric conditions and diabetes complications among older, insured adults with diabetes the diabetes and aging study. J Aging Health. 2015:0898264315569455.

  7. Forbes S, McGowan NW, Duncan K, Anderson D, Barclay J, Mitchell D, Docherty K, Turner D, Campbell JMD, Casey JJ. Islet transplantation from a nationally funded UK centre reaches socially deprived groups and improves metabolic outcomes. Diabetologia. 2015;58(6):1300-08.

  8. Watson CJ. The current challenges for pancreas transplantation for diabetes mellitus. Pharmacol Res. 2015;98:45-51.

  9. Rutti S, Sauter NS, Bouzakri K, Prazak R, Halban PA, Donath MY. In vitro proliferation of adult human beta-cells. PLoS One. 2012;7(4):e35801.

  10. Blyszczuk P, Asbrand C, Rozzo A, Kania G, St-Onge L, Rupnik M, Wobus AM. Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol. 2004;48(10):1095-1104.

  11. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292(5520):1389-94.

  12. Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nature Rev Gen. 2006;7(4):319-27.

  13. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA. 1995;92(17):7844-48.

  14. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes. 2001;50(8):1691-97.

  15. Lei T, Jacob S, Ajil-Zaraa I, Dubuisson JB, Irion O, Jaconi M, Feki A. Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res. 2007;17(8):682-88.

  16. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000;49(2):157-62.

  17. Lester LB, Kuo H-C, Andrews L, Nauert B, Wolf DP. Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes. Reprod Biol Endocrinol. 2004;2(42):5.

  18. Schroeder IS, Rolletschek A, Blyszczuk P, Kania G, Wobus AM. Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat Protoc. 2006;1(2):495-507.

  19. Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA. 2002;99(25):16105-110.

  20. Sipione S, Eshpeter A, Lyon J, Korbutt G, Bleackley R. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia. 2004;47(3):499-508.

  21. Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell. 2003;4(5):361-70.

  22. Newman MB, Misiuta I, Willing AE, Zigova T, Karl RC, Borlongan CV, Sanberg PR. Tumorigenicity issues of em-bryonic carcinoma-derived stem cells: relevance to surgical trials using NT2 and hNT neural cells. Stem Cell Dev. 2005;14(1):29-43.

  23. Path G, Seufert J. Current status and perspectives of stem cell therapy for the treatment of diabetes mellitus. Medizinische Klinik. 2003;98(5):277-82.

  24. Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells. 2004;22(3):265-74.

  25. Hori Y, Gu X, Xie X, Kim SK. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med. 2005;2(4):e103.

  26. Miyazaki S, Yamato E, Miyazaki J-I. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes. 2004;53(4):1030-37.

  27. Hansson M, Tonning A, Frandsen U, Petri A, Rajagopal J, Englund MC, Heller RS, Hakansson J, Fleckner J, Skold HN, Melton D, Semb H, Serup P. Artifactual insulin release from differentiated embryonic stem cells. Diabetes. 2004;53(10):2603-09.

  28. Kroon E, Martinson L, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, AgulnickAD, D'Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443-52.

  29. Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O'Neil JJ, Ao Z, Warnock GL, Kieffer TJ. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016-29.

  30. Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J, Fiorina P, Atkinson M, Sayegh MH, Abdi R. Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes. 2010;59(12):3139-47.

  31. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA. 2002;99(12): 8078-83.

  32. Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009;106(37):15768-73.

  33. Urban VS, Kiss J, Kovacs J, Gocza E, Vas V, Monostori E, Uher F. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells. 2008;26(1):244-53.

  34. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Med J. 2007;120(9):771-79.

  35. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nature Med. 2000;6(3):278-82.

  36. Kadam S, Muthyala S, Nair P, Bhonde R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev Diabetic Studies. 2010;7(2):168.

  37. Chen L-B, Jiang X-B, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol. 2004;10(20):3016-20.

  38. Zhao Y, Mazzone T. Human cord blood stem cells and the journey to a cure for type 1 diabetes. Autoimmun Rev. 2010;10(2):103-07.

  39. Haller MJ, Wasserfall CH, McGrail KM, Cintron M, Brusko TM, Wingard JR, Kelly SS, Shuster JJ, Atkinson MA, Schatz DA. Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care. 2009;32(11):2041-46.

  40. Lu P, Liu F, Yan L, Peng T, Liu T, Yao Z, Wanga CY. Stem cells therapy for type 1 diabetes. Diabetes Res Clin Pract. 2007;78(1):1-7.

  41. Nakajima-Nagata N, Sakurai T, Mitaka T, Yamato E, Miyazaki J, Tabata Y, Sugai M, Shimizu A. In vitro induction of adult hepatic progenitor cells into insulin-producing cells. Biochem Biophys Res Commun. 2004;318(3):625-30.

  42. Zalzman M, Gupta S, Giri RK, Berkovich I, Sappal BS, Karnieli O, Zern MA, Fleischer N, Efrat S. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA. 2003;100(12): 7253-58.

  43. Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of P-cell mass in the growing rat pancreas: estimation with a simple mathematical model. Diabetes. 1995;44(3):249-56.

  44. Tang D-Q, Lu S, Sun Y-P, Rodrigues E, Chou W, Yang C, Cao LZ, Chang LJ, Yang LJ. Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1-and Pdx1-VP16 mediated by lentiviral vectors. Lab Invest. 2006;86(1):83-93.

  45. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas: a possible recapitulation of embryonic development. Diabetes. 1993;42(12):1715-20.

  46. Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, Neil JJ. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 2000;97(14):7999-8004.

  47. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, Kooy DV. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnol. 2004;22(9):1115-24.

  48. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-72.

  49. Ryu S, Kodama S, Ryu K, Schoenfeld DA, Faustman DL. Reversal of established autoimmune diabetes by restoration of endogenous P cell function. J Clin Invest. 2001;108(1):63-72.

  50. Kodama S, Kuhtreiber W, Fujimura S, Dale EA, Faustman DL. Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science. 2003;302(5648):1223-27.

  51. Chong AS, Shen J, Tao J, Yin D, Kuznetsov A, Hara M, Philipson LH. Reversal of diabetes in non-obese diabetic mice without spleen cell-derived B cell regeneration. Science. 2006;311(5768):1774-75.

  52. Nishio J, Gaglia JL, Turvey SE, Campbell C, Benoist C, Mathis D. Islet recovery and reversal of murine type 1 diabetes in the absence of any infused spleen cell contribution. Science. 2006;311(5768):1775-78.

  53. Suri A, Calderon B, Esparza TJ, Frederick K, Bittner P, Unanue ER. Immunological reversal of autoimmune diabetes without hematopoietic replacement of B cells. Science. 2006;311(5768):1778-80.

  54. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41-49.

  55. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003;111(6):843-50.

  56. Moriscot C, de Fraipont F, Richard MJ, Marchand M, Savatier P, Bosco D, Favrot M, Benhamou PY. Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas devel-opmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells. 2005;23(4):594-603.

  57. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hema-topoietic stem cells. Science. 2002;297(5590):2256-59.

  58. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Mickie Bhatia M. Bone marrow-derived stem cells initiate pancreatic regeneration. Nature Biotechnol. 2003;21(7):763-70.

  59. Lechner A, Habener JF. Bone marrow stem cells find a path to the pancreas. Nature Biotechnol. 2003;21(7):755-56.

  60. Izumida Y, Aoki T, Yasuda D, Koizumi T, Suganuma C, Saito K, Murai N, Shimizu Y, Hayashi K, Odaira M, Kusano T, Kushima M, Kusano M. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic P-cells. Biochem Biophys Res Commun. 2005;333(1):273-82.

  61. Tian C, Bagley J, Cretin N, Seth N, Wucherpfennig KW, Iacomini J. Prevention of type 1 diabetes by gene therapy. J Clin Invest. 2004;114(7):969-78.

  62. Garza KM, Chan SM, Suri R, Nguyen LT, Odermatt B, Schoenberger SP, Pamela S, Ohashi PS. Role of antigen-presenting cells in mediating tolerance and autoimmunity. J Exper Med. 2000;191(11):2021-28.

  63. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ra vetch JV, Steinman RM, Nussenzweig MC. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194(6):769-80.

  64. Cui Y, Golob J, Kelleher E, Ye Z, Pardoll D, Cheng L. Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood. 2002;99(2):399-408.

  65. Narendran P, Mannering SI, Harrison LC. Proinsulin-a pathogenic autoantigen in type 1 diabetes. Autoimmun Rev. 2003;2(4):204-10.

  66. Krishnamurthy B, Dudek NL, McKenzie MD, Purcell AW, Brooks AG, Shane Gellert S, Colman PG, Harrison LC, Lew AM, Thomas HE, Kay TWH. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest. 2006;116(12):3258-65.

  67. Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biol. 2011;13(5):497-505.

  68. Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Yan Shi Y, Deng H. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19(4):429-38.

  69. Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Bio Chem. 2008;283(46):31601-07.

  70. Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009;15(2):59-68.

  71. Niknamasl A, Ostad SN, Soleimani M, Azami M, Salmani MK, Lotfibakhshaiesh N, Ebrahimi-Barough S. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell. Cell Biol Int. 2014;38(10):1174-82.

  72. Hashemi M, Kalalinia F. Application of encapsulation technology in stem cell therapy. Life Sci. 2015;143:139-46.

  73. Ngoc PK, Van Phuc P, Nhung TH, Thuy DT, Nguyet NTM. Improving the efficacy of type 1 diabetes therapy by transplantation of immunoisolated insulin-producing cells. Human Cell. 2011;24(2):86-95.

  74. Leon-Quinto T, Jones J, Skoudy A, Burcin M, Soria B. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia. 2004;47(8):1442-51.

  75. Wang W, Xu S, Ren Z, Jiang J, Zheng S. Gut microbiota and allogeneic transplantation. J Trans Med. 2015;13(1):275-79.

  76. Holm S. Time to reconsider stem cell ethics-the importance of induced pluripotent cells. J Med Ethics. 2008;34(2):63-69.

  77. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917-20.

CITADO POR
  1. Hu Xi-Min, Zhang Qi, Zhou Rui-Xin, Wu Yan-Lin, Li Zhi-Xin, Zhang Dan-Yi, Yang Yi-Chao, Yang Rong-Hua, Hu Yong-Jun, Xiong Kun, Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications, World Journal of Stem Cells, 13, 5, 2021. Crossref

  2. Zhang Qi, Wan Xin-xing, Hu Xi-min, Zhao Wen-juan, Ban Xiao-xia, Huang Yan-xia, Yan Wei-tao, Xiong Kun, Targeting Programmed Cell Death to Improve Stem Cell Therapy: Implications for Treating Diabetes and Diabetes-Related Diseases, Frontiers in Cell and Developmental Biology, 9, 2021. Crossref

  3. 朱 家臣, Application and Progress of Stem Cells in the Treatment of Diabetes, Bioprocess, 11, 04, 2021. Crossref

  4. Riaz Saima, Hussain Iqbal, Ibrahim Muhammad, Ishtiaq Muhmmad, Ali Qasim, Muazzam Ali Muhammad, Sajid Hamid Akash Muhammad, Extraction and Optimization of Active Metabolites From Cluster Bean: An In Vitro Biological and Phytochemical Investigation, Dose-Response, 20, 2, 2022. Crossref

Próximos Artículos

PRMT6 promotes the immune evasion of gastric cancer via upregulating ANXA1 Liang Xu, Fenger Zhang, Binqi Yu, Shengnan Jia, Sunfu Fan PURPL promotes M2 macrophage polarization in lung cancer via regulating RBM4/xCT signaling Jipeng Guo, Chongwen Gong, Hao Wang SIAH1 promotes the pyroptosis of cardiomyocytes in diabetic cardiomyopathy via regulating IκB-α/NF-κB signaling Jinbin Wu, Yaoming Yan SLC7A2-mediated lysine catabolism inhibits immunosuppression in triple negative breast cancer Yuanyuan Sun, Yaqing Li, Chengying Jiang, Chenying Liu, Yuanming Song SIAH2-mediated degradation of ACSL4 inhibits the anti-tumor activity of CD8+ T cells in hepatocellular carcinoma Fangzheng Shu, Yuhua Shi, Xiangxiang Shan, Wenzhang Zha, Rengen Fan, Wanjiang Xue RBM15-mediated N6-methyl adenosine (m6A) modification of EZH2 drives the epithelial-mesenchymal transition of cervical cancer Ruixue Wang, Wenhua Tan Evidence-Based Storytelling and A Strategic Roadmap to Promote Cancer Prevention Via Adolescent HPV Vaccination in Northern New England Matthew Dugan, Gary Stein, Jan Carney, Sheila Clifford-Bova KDM4A-AS1 promotes cell proliferation, migration and invasion via the miR-4306/STX6 axis in hepatocellular carcinoma Wei Cao, Yuhan Ren, Ying Liu, Guoshu Cao, Zhen Chen, Fan Wang HDAC1-mediated downregulation of NEU1 exacerbates the aggressiveness of cervical cancer Nanzi Xie, Sisi Mei, Changlan Dai, Wei Chen Effect of miR-26b-5p on progression of acute myeloid leukemia by regulating USP48-mediated Wnt/β-catenin pathway Yu Xie, Lin Tan, Kun Wu, Deyun Li, Chengping Li
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain