Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Eukaryotic Gene Expression
Factor de Impacto: 2.156 Factor de Impacto de 5 años: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Imprimir: 1045-4403
ISSN En Línea: 2162-6502

Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v17.i3.20
pages 187-196

Histone Deacetylase Co-Repressor Complex Control of Runx2 and Bone Formation

Eric D. Jensen
The Cancer Center, University of Minnesota, Minneapolis, MN 55455
Aswathy K. Nair
Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
Jennifer J. Westendorf
The Cancer Center, Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN 55455


A decade has passed since the transcription factor, Runx2, was found to be essential for osteoblast development and chondrocyte hypertrophy. During the last 10 years, our understanding of Runx2's physiological roles and the molecular mechanisms whereby it regulates gene expression to control cell-cycle progression and cellular differentiation has increased exponentially. Runx2 is expressed in osteoblasts, prehypertrophic chondrocytes, mesenchymal cells of the perichondrium, T lymphocytes, endothelial cells, and breast and prostate epithelial cells, with increased expression observed in breast and prostate carcinomas. Although Runx2 and other mammalian Runt domain proteins were originally described as transcriptional activators, they are also transcriptional repressors and thus maintain functional similarities with their Drosophila homolog, Runt. Runx2 binds a consensus DNA sequence but does not possess any enzymatic activities that directly affect chromatin structure. It alters gene expression by recruiting cofactors to gene regulatory elements. Histone deacetylases (HDACs) are among the co-repressors that interact with Runx2. In this review, we summarize data demonstrating that several HDACs and their associated proteins interact with Runx2, regulate its activity, and affect bone formation. HDACs are components of multiprotein complexes that interact with many transcription factors and are subject to regulation by extracellular signals. The elucidation of HDAC complex components that influence Runx2 activity in specific cell types and in response to various extracellular stimuli will increase our understanding of how this crucial transcription factor functions, and how we might be able to control its activity to influence bone formation or reduce bone disease associated with cancer metastasis.

Articles with similar content:

A Compilation and Classification of DNA Binding Sites for Protein Transcription Factors from Vertebrates
Critical Reviews™ in Eukaryotic Gene Expression, Vol.4, 1994, issue 2-3
Teni Boulikas
Hdac-Mediated Control of Endochondral and Intramembranous Ossification
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 2
Meghan E. McGee-Lawrence, Elizabeth W. Bradley, Jennifer J. Westendorf
Retinoid-Regulated Gene Expression in Neural Development
Critical Reviews™ in Eukaryotic Gene Expression, Vol.7, 1997, issue 4
Margaret Clagett-Dame, Lori A. Plum
Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary Stein, Christopher Lengner
Genetic and Epigenetic Control of RKIP Transcription
Critical Reviews™ in Oncogenesis, Vol.19, 2014, issue 6
Milad S. Bitar, Kevin Qin, Kam C. Yeung, Fahd Al-Mulla, Hanna Tegegne, Ila Datar, Robert J. Trumbly