Suscripción a Biblioteca: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Publicado 6 números por año

ISSN Imprimir: 1045-4403

ISSN En Línea: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Scaffold/Matrix-Attached Regions: Topological Switches with Multiple Regulatory Functions

Volumen 6, Edición 2-3, 1996, pp. 115-138
DOI: 10.1615/CritRevEukarGeneExpr.v6.i2-3.20
Get accessGet access

SINOPSIS

The nuclear matrix or scaffold that can be prepared and investigated in vitro has an affinity for distinct topological forms of DNA and for sequences that permit the induction of such a topology by their association with a corresponding set of proteins (so-called matrix- or scaffold-attached regions, S/MARs). As a consequence, S/MARs are regarded as topological sinks that can be regulated according to activity-related requirements. Here we develop a switching model to understand the biological functions of S/MARs, which are able to augment transcriptional processes and form barriers between independently regulated domains. The current literature is screened for examples supporting such a mechanism and novel approaches are suggested for their further elucidation.

CITADO POR
  1. Lei J X, Liu Q Y, Sodja C, LeBlanc J, Ribecco-Lutkiewicz M, Smith B, Charlebois C, Walker P R, Sikorska M, S/MAR-binding properties of Sox2 and its involvement in apoptosis of human NT2 neural precursors, Cell Death & Differentiation, 12, 11, 2005. Crossref

  2. Barrett Thomas J., Spelsberg Thomas C., , 55, 1998. Crossref

  3. Dame James R., Spencer Virginia A., , 65, 2000. Crossref

  4. Suo Guangli, Chen Bing, Zhang Jingyu, Gao Yuan, Wang Xia, He Zhengquan, Dai Jianwu, Expression of active hBMP2 in transgenic tobacco plants, Plant Cell Reports, 25, 12, 2006. Crossref

  5. Hernandez-Hernandez J. M., Mallappa C., Nasipak B. T., Oesterreich S., Imbalzano A. N., The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state, Nucleic Acids Research, 41, 11, 2013. Crossref

  6. Gotzmann Josef, Eger Andreas, Meissner Michael, Grimm Rudolf, Gerner Christopher, Sauermann Georg, Foisner Roland, Two-dimensional electrophoresis reveals a nuclear matrix-associated nucleolin complex of basic isoelectric point, Electrophoresis, 18, 14, 1997. Crossref

  7. Guillemot Fabrice, Cerutti Italina, Auffray Charles, Devignes Marie-Dominique, A transgenic mouse model engineered to investigate human brain-derived neurotrophic factor in vivo, Transgenic Research, 16, 2, 2007. Crossref

  8. Martelli Alberto M., Bortul Roberta, Bareggi Renato, Grill Vittorio, Narducci Paola, Zweyer Marina, Biochemical and morphological changes in the nuclear matrix prepared from apoptotic HL-60 cells: Effect of different stabilizing procedures, Journal of Cellular Biochemistry, 74, 1, 1999. Crossref

  9. Werner Thomas, Proteomics and regulomics: The yin and yang of functional genomics, Mass Spectrometry Reviews, 23, 1, 2004. Crossref

  10. Lindenmuth Danielle M., van Wijnen Andre J., Hiebert Scott, Stein Janet L., Lian Jane B., Stein Gary S., Subcellular partitioning of transcription factors during osteoblast differentiation: Developmental association of the AML/CBFα/PEBP2α-related transcription factor-NMP-2 with the nuclear matrix, Journal of Cellular Biochemistry, 66, 1, 1997. Crossref

  11. Bode J., Benham C., Ernst E., Knopp A., Marschalek R., Strick R., Strissel P., Fatal connections: When DNA ends meet on the nuclear matrix, Journal of Cellular Biochemistry, 79, S35, 2000. Crossref

  12. Platts Adrian, Quayle Amelia, Krawetz Stephen, In-silico prediction and observations of nuclear matrix attachment, Cellular and Molecular Biology Letters, 11, 2, 2006. Crossref

  13. Tao Liang, Dong Zhifeng, Zannis-Hadjopoulos Maria, Price Gerald B., Immortalization of human WI38 cells is associated with differential activation of the c-myc origins, Journal of Cellular Biochemistry, 82, 3, 2001. Crossref

  14. Martelli Alberto M., Bortul Roberta, Fackelmayer Frank O., Tazzari Pier Luigi, Bareggi Renato, Narducci Paola, Zweyer Marina, Biochemical and morphological characterization of the nuclear matrix from apoptotic HL-60 cells, Journal of Cellular Biochemistry, 72, 1, 1999. Crossref

  15. Cai Rong, Xu Weirong, Dai Bingbing, Cai Xia, Xu Rongting, Lu Jian, SATB1 binds an intronic MAR sequence in human PI3kγ in vitro, Molecular Biology Reports, 37, 3, 2010. Crossref

  16. Aranda-Anzaldo A., The normal association between newly replicated DNA and the nuclear matrix is abolished in cells infected by herpes simplex virus type 1, Research in Virology, 149, 4, 1998. Crossref

  17. Tolstonog Genrich V., Wang Xiao, Shoeman Robert, Traub Peter, Intermediate Filaments Reconstituted from Vimentin, Desmin, and Glial Fibrillary Acidic Protein Selectively Bind Repetitive and Mobile DNA Sequences from a Mixture of Mouse Genomic DNA Fragments, DNA and Cell Biology, 19, 11, 2000. Crossref

  18. Tolstonog Genrich V., Sabasch Michael, Traub Peter, Cytoplasmic Intermediate Filaments Are Stably Associated with Nuclear Matrices and Potentially Modulate Their DNA-Binding Function, DNA and Cell Biology, 21, 3, 2002. Crossref

  19. STERNBERG RICHARD v., On the Roles of Repetitive DNA Elements in the Context of a Unified Genomic-Epigenetic System, Annals of the New York Academy of Sciences, 981, 1, 2006. Crossref

  20. Hily Jean-Michel, Singer Stacy D., Yang Yazhou, Liu Zongrang, A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana, Plant Cell Reports, 28, 7, 2009. Crossref

  21. Li Guohong, Tolstonog Genrich V., Sabasch Michael, Traub Peter, InteractionIn Vitroof Type III Intermediate Filament Proteins with Supercoiled Plasmid DNA and Modulation of Eukaryotic DNA Topoisomerase I and II Activities, DNA and Cell Biology, 21, 10, 2002. Crossref

  22. Vassetzky Y. S., Ioudinkova E. S., Razin S. V., MARs Wars: heterogeneity and clustering of DNA-binding domains in the nuclear matrix, Biopolymers and Cell, 25, 6, 2009. Crossref

  23. YARON , KRAMER , GYI , EBRAHIM , EVANS , JOHNSON , KRAWETZ , Centromere sequences localize to the nuclear halo of human spermatozoa, International Journal of Andrology, 21, 1, 1998. Crossref

  24. Garee Jason P., Oesterreich Steffi, SAFB1's multiple functions in biological control-lots still to be done!, Journal of Cellular Biochemistry, 109, 2, 2010. Crossref

  25. Yamaji Naoki, Kyo Masaharu, Two promoters conferring active gene expression in vegetative nuclei of tobacco immature pollen undergoing embryogenic dedifferentiation, Plant Cell Reports, 25, 8, 2006. Crossref

  26. Haran Tali E., Mohanty Udayan, The unique structure of A-tracts and intrinsic DNA bending, Quarterly Reviews of Biophysics, 42, 1, 2009. Crossref

  27. Wang T., Hou G., Wang Y., Xue L., Characterization and heterologous expression of a new matrix attachment region binding protein from the unicellular green alga Dunaliella salina, Journal of Biochemistry, 148, 6, 2010. Crossref

  28. Li Guohong, Tolstonog Genrich V., Traub Peter, InteractionIn Vitroof Type III Intermediate Filament Proteins with Z-DNA and B-Z-DNA Junctions, DNA and Cell Biology, 22, 3, 2003. Crossref

  29. Andrabi S. M. H., Mammalian sperm chromatin structure and assessment of DNA fragmentation, Journal of Assisted Reproduction and Genetics, 24, 12, 2007. Crossref

  30. Kohwi-Shigematsu Terumi, Kohwi Yoshinori, Matrix Attachment Regions, in Wiley Encyclopedia of Molecular Medicine, 2002. Crossref

  31. Li Guohong, Tolstonog Genrich V., Sabasch Michael, Traub Peter, Type III Intermediate Filament Proteins Interact with Four-Way Junction DNA and Facilitate Its Cleavage by the Junction-Resolving Enzyme T7 Endonuclease I, DNA and Cell Biology, 22, 4, 2003. Crossref

  32. Satou Wataru, Tanimoto Hiroshi, Ukekawa Ryo, Fujii Michihiko, Ayusawa Dai, Amplification of nuclear aldolase A in mouse cell mutants resistant to Hoechst 33342, Biochemical and Biophysical Research Communications, 315, 4, 2004. Crossref

  33. Bode Jürgen, Winkelmann Silke, Götze Sandra, Spiker Steven, Tsutsui Ken, Bi Chengpeng, A.K. Prashanth, Benham Craig, Correlations between Scaffold/Matrix Attachment Region (S/MAR) Binding Activity and DNA Duplex Destabilization Energy, Journal of Molecular Biology, 358, 2, 2006. Crossref

  34. Eivazova Elvira R., Gavrilov Aleksey, Pirozhkova Iryna, Petrov Andrei, Iarovaia Olga V., Razin Sergey V., Lipinski Marc, Vassetzky Yegor S., Interaction in vivo between the Two Matrix Attachment Regions Flanking a Single Chromatin Loop, Journal of Molecular Biology, 386, 4, 2009. Crossref

  35. Krawetz S.A., Kramer J.A., McCarrey J.R., Reprogramming the male gamete genome: a window to successful gene therapy, Gene, 234, 1, 1999. Crossref

  36. Holmes-Davis Rachel, Comai Luca, Nuclear matrix attachment regions and plant gene expression, Trends in Plant Science, 3, 3, 1998. Crossref

  37. Hoppe Reiner, Weimer Marc, Beck Anja, Breer Heinz, Strotmann Jörg, Sequence Analyses of the Olfactory Receptor Gene Cluster mOR37 on Mouse Chromosome 4, Genomics, 66, 3, 2000. Crossref

  38. Toffolatti Luisa, Cardazzo Barbara, Nobile Carlo, Danieli Gian Antonio, Gualandi Francesca, Muntoni Francesco, Abbs Steve, Zanetti Patrizia, Angelini Corrado, Ferlini Alessandra, Fanin Marina, Patarnello Tomaso, Investigating the Mechanism of Chromosomal Deletion: Characterization of 39 Deletion Breakpoints in Introns 47 and 48 of the Human Dystrophin Gene, Genomics, 80, 5, 2002. Crossref

  39. Brunetti Roberta, Prosseda Gianni, Beghetto Elisa, Colonna Bianca, Micheli Gioacchino, The looped domain organization of the nucleoid in histone-like protein defective Escherichia coli strains***This work is dedicated to Maurice Hofnung, tragically deceased on June 28th, 2001., Biochimie, 83, 9, 2001. Crossref

  40. Walter Wendy R., Singh Gautam B., Krawetz Stephen A., MARs Mission Update, Biochemical and Biophysical Research Communications, 242, 2, 1998. Crossref

  41. Zhou Cong-Zhao, Liu Bing, Identification and characterization of a silkgland-related matrix association region in Bombyx mori, Gene, 277, 1-2, 2001. Crossref

  42. Ülker Bekir, Allen George C., Thompson William F., Spiker Steven, Weissinger Arthur K., A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plants, The Plant Journal, 18, 3, 1999. Crossref

  43. Shaposhnikov Sergey A., Akopov Sergey B., Chernov Igor P., Thomsen Preben D., Joergensen Claus, Collins Andrew R., Frengen Eirik, Nikolaev Lev G., A map of nuclear matrix attachment regions within the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1, Genomics, 89, 3, 2007. Crossref

  44. Dai Bingbing, Ying Lei, Cai Rong, Li Ying, Zhang Xingqian, Lu Jian, Qian Guanxiang, Identification of a nuclear matrix attachment region like sequence in the last intron of PI3Kγ, Biochemical and Biophysical Research Communications, 341, 2, 2006. Crossref

  45. Benham Craig, Kohwi-Shigematsu Terumi, Bode Jürgen, Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions , Journal of Molecular Biology, 274, 2, 1997. Crossref

  46. Dietz-Pfeilstetter Antje, Stability of transgene expression as a challenge for genetic engineering, Plant Science, 179, 3, 2010. Crossref

  47. Jordan I.King, Rogozin Igor B, Glazko Galina V, Koonin Eugene V, Origin of a substantial fraction of human regulatory sequences from transposable elements, Trends in Genetics, 19, 2, 2003. Crossref

  48. Qiao Junhua, Oumard André, Wegloehner Wolfgang, Bode Juergen, Novel Tag-and-Exchange (RMCE) Strategies Generate Master Cell Clones with Predictable and Stable Transgene Expression Properties, Journal of Molecular Biology, 390, 4, 2009. Crossref

  49. Tu Thomas, Budzinska Magdalena A., Shackel Nicholas A., Jilbert Allison R., Conceptual models for the initiation of hepatitis B virus-associated hepatocellular carcinoma, Liver International, 35, 7, 2015. Crossref

  50. Iwamoto Masao, Higo Hiromi, Higo Kenichi, Strong expression of the rice catalase gene CatB promoter in protoplasts and roots of both a monocot and dicots, Plant Physiology and Biochemistry, 42, 3, 2004. Crossref

  51. Inukai Tsuyoshi, Sano Yoshio, Sequence rearrangement in the AT-rich minisatellite of the novel rice transposable elementBasho, Genome, 45, 3, 2002. Crossref

  52. Saunders Fay, Sweeney Berni, Antoniou Michael N., Stephens Paul, Cain Katharine, Ho Mitchell, Chromatin Function Modifying Elements in an Industrial Antibody Production Platform - Comparison of UCOE, MAR, STAR and cHS4 Elements, PLOS ONE, 10, 4, 2015. Crossref

  53. Tu Thomas, Bühler Sandra, Bartenschlager Ralf, Chronic viral hepatitis and its association with liver cancer, Biological Chemistry, 398, 8, 2017. Crossref

  54. Lee Kyounghee, Seo Pil Joon, Blazquez Miguel A., Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation, PLOS ONE, 12, 7, 2017. Crossref

  55. Davie J R, Samuel S K, Spencer V A, Holth L T, Chadee D N, Peltier C P, Sun J -M, Chen H Y, Wright J A, Organization of chromatin in cancer cells: role of signalling pathways, Biochemistry and Cell Biology, 77, 4, 1999. Crossref

  56. Chernov I.P., Akopov S.B., Nikolaev L.G., Sverdlov E.D., Identification and mapping of nuclear matrix-attachment regions in a one megabase locus of human chromosome 19q13.12: Long-range correlation of S/MARs and gene positions, Journal of Cellular Biochemistry, 84, 3, 2002. Crossref

  57. Bode Jürgen, Schlake Thomas, Iber Michaela, Schübeler Dirk, Seibler Jost, Snezhkov Evgeney, Nikolaev Lev, The Transgeneticists Toolbox: Novel Methods for the Targeted Modification of Eukaryotic Genomes, Biological Chemistry, 381, 9-10, 2000. Crossref

  58. Oesterreich Steffi, Scaffold attachment factors SAFB1 and SAFB2: Innocent bystanders or critical players in breast tumorigenesis?, Journal of Cellular Biochemistry, 90, 4, 2003. Crossref

  59. Singh Gautam B., Statistical Mining of the Matrix Attachment Regions in Genomic Sequences, in Introduction to Bioinformatics, 2003. Crossref

  60. Gluch A., Vidakovic M., Bode J., Scaffold/Matrix Attachment Regions (S/MARs): Relevance for Disease and Therapy, in Protein-Protein Interactions as New Drug Targets, 186, 2008. Crossref

  61. Kieffer Lynda J., Greally John M., Landres Inna, Nag Shanta, Nakajima Yuko, Kohwi-Shigematsu Terumi, Kavathas Paula B., Identification of a Candidate Regulatory Region in the HumanCD8Gene Complex by Colocalization of DNase I Hypersensitive Sites and Matrix Attachment Regions Which Bind SATB1 and GATA-3, The Journal of Immunology, 168, 8, 2002. Crossref

  62. Gorman Cori, Arope Salina, Grandjean Mélanie, Girod Pierre-Alain, Mermod Nicolas, Use of MAR Elements to Increase the Production of Recombinant Proteins, in Cell Line Development, 6, 2009. Crossref

  63. Singh Gautam B., Learning Information Patterns in Biological Databases - Stochastic Data Mining, in Data Mining and Knowledge Discovery Handbook, 2009. Crossref

  64. Singh Gautam B., Learning Information Patterns in Biological Databases, in Data Mining and Knowledge Discovery Handbook, 2005. Crossref

  65. Tetko Igor V, Haberer Georg, Rudd Stephen, Meyers Blake, Mewes Hans-Werner, Mayer Klaus F. X, Bourne Philip E, Spatiotemporal Expression Control Correlates with Intragenic Scaffold Matrix Attachment Regions (S/MARs) in Arabidopsis thaliana, PLoS Computational Biology, 2, 3, 2006. Crossref

  66. Singh Gautam B., Discovering Matrix Attachment Regions (MARs) in genomic databases, ACM SIGKDD Explorations Newsletter, 1, 2, 2000. Crossref

  67. Lachapelle Sophie, Oesterreich Steffi, Lebel Michel, The Werner syndrome helicase protein is required for cell proliferation, immortalization, and tumorigenesis in Scaffold Attachment Factor B1 deficient mice, Aging, 3, 3, 2011. Crossref

  68. Barrett Thomas J., Sandhu Nicole P., Tomlinson Andy J., Benson Linda M., Subramaniam Malayannan, Naylor Stephen, Spelsberg Thomas C., Interactions of the Nuclear Matrix-Associated Steroid Receptor Binding Factor with Its DNA Binding Element in the c-myc Gene Promoter, Biochemistry, 39, 4, 2000. Crossref

  69. Seibler Jost, Schübeler Dirk, Fiering Steven, Groudine Mark, Bode Jürgen, DNA Cassette Exchange in ES Cells Mediated by FLP Recombinase:  An Efficient Strategy for Repeated Modification of Tagged Loci by Marker-Free Constructs, Biochemistry, 37, 18, 1998. Crossref

  70. Elcock Lauren S., Bridger Joanna M., Exploring the effects of a dysfunctional nuclear matrix, Biochemical Society Transactions, 36, 6, 2008. Crossref

  71. Schübeler Dirk, Maass Karin, Bode Jürgen, Retargeting of Retroviral Integration Sites for the Predictable Expression of Transgenes and the Analysis of Cis-Acting Sequences1, Biochemistry, 37, 34, 1998. Crossref

  72. Michalowski Susan M., Allen George C., Hall, Gerald E., Thompson William F., Spiker Steven, Characterization of Randomly-Obtained Matrix Attachment Regions (MARs) from Higher Plants,, Biochemistry, 38, 39, 1999. Crossref

  73. Vazquez M., Moore L., Kennison J.A., The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription, Development, 126, 4, 1999. Crossref

  74. Seibler Jost, Bode Jürgen, Double-Reciprocal Crossover Mediated by FLP-Recombinase:  A Concept and an Assay,, Biochemistry, 36, 7, 1997. Crossref

  75. Frisch Matthias, Frech Kornelie, Klingenhoff Andreas, Cartharius Kerstin, Liebich Ines, Werner Thomas, In Silico Prediction of Scaffold/Matrix Attachment Regions in Large Genomic Sequences, Genome Research, 12, 2, 2002. Crossref

  76. Sun Jian-Min, Chen Hou Yu, Moniwa Mariko, Samuel Shanti, Davie James R., Purification and Characterization of Chicken Erythrocyte Histone Deacetylase 1, Biochemistry, 38, 18, 1999. Crossref

  77. Rudd Stephen, Frisch Matthias, Grote Korbinian, Meyers Blake C., Mayer Klaus, Werner Thomas, Genome-Wide in Silico Mapping of Scaffold/Matrix Attachment Regions in Arabidopsis Suggests Correlation of Intragenic Scaffold/Matrix Attachment Regions with Gene Expression  , Plant Physiology, 135, 2, 2004. Crossref

  78. Kohwi-Shigematsu Terumi, Maass Karin, Bode Jürgen, A Thymocyte Factor SATB1 Suppresses Transcription of Stably Integrated Matrix-Attachment Region-Linked Reporter Genes, Biochemistry, 36, 40, 1997. Crossref

  79. Razin Sergey V, Matrix‐associated Regions (MARs) and Scaffold Attachment Regions (SARs), in eLS, 2005. Crossref

  80. Magnusson Kristina, de Wit Meike, Brennan Donal J., Johnson Louis B., McGee Sharon F., Lundberg Emma, Naicker Kirsha, Klinger Rut, Kampf Caroline, Asplund Anna, Wester Kenneth, Gry Marcus, Bjartell Anders, Gallagher William M., Rexhepaj Elton, Kilpinen Sami, Kallioniemi Olli-Pekka, Belt Eric, Goos Jeroen, Meijer Gerrit, Birgisson Helgi, Glimelius Bengt, Borrebaeck Carl A.K., Navani Sanjay, Uhlén Mathias, O'Connor Darran P., Jirström Karin, Pontén Fredrik, SATB2 in Combination With Cytokeratin 20 Identifies Over 95% of all Colorectal Carcinomas, American Journal of Surgical Pathology, 35, 7, 2011. Crossref

  81. Wiersma Erik J., Ronai Diana, Berru Maribel, Tsui Florence W.L., Shulman Marc J., Role of the Intronic Elements in the Endogenous Immunoglobulin Heavy Chain Locus, Journal of Biological Chemistry, 274, 8, 1999. Crossref

  82. Sakai Eiko, Bottaro Andrea, Davidson Laurie, Sleckman Barry P., Alt Frederick W., Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions, Proceedings of the National Academy of Sciences, 96, 4, 1999. Crossref

  83. Britton Sébastien, Frit Philippe, Biard Denis, Salles Bernard, Calsou Patrick, ARTEMIS Nuclease Facilitates Apoptotic Chromatin Cleavage, Cancer Research, 69, 20, 2009. Crossref

  84. Stünkel Walter, Huang Zhonghui, Tan Shyh-Han, O'Connor Mark J., Bernard Hans-Ulrich, Nuclear Matrix Attachment Regions of Human Papillomavirus Type 16 Repress or Activate the E6 Promoter, Depending on the Physical State of the Viral DNA, Journal of Virology, 74, 6, 2000. Crossref

  85. Buceta M, Galbete J L, Kostic C, Arsenijevic Y, Mermod N, Use of human MAR elements to improve retroviral vector production, Gene Therapy, 18, 1, 2011. Crossref

  86. Koga Hisashi, Deppert Wolfgang, Identification of genomic DNA sequences bound by mutant p53 protein (Gly245→Ser) in vivo, Oncogene, 19, 36, 2000. Crossref

  87. Fiorini A., Gouveia F. de S., Fernandez M. A., Scaffold/matrix attachment regions and intrinsic DNA curvature, Biochemistry (Moscow), 71, 5, 2006. Crossref

  88. Biglione Sebastian, Tsytsykova Alla V., Goldfeld Anne E., Monocyte-specific Accessibility of a Matrix Attachment Region in the Tumor Necrosis Factor Locus, Journal of Biological Chemistry, 286, 51, 2011. Crossref

  89. Mlynárová Ludmila, Loonen Annelies, Mietkiewska Elzbieta, Jansen Ritsert C, Nap Jan-Peter, Assembly of Two Transgenes in an Artificial Chromatin Domain Gives Highly Coordinated Expression in Tobacco, Genetics, 160, 2, 2002. Crossref

  90. Bernard Hans-Ulrich, Gene Expression of Genital Human Papillomaviruses and Considerations on Potential Antiviral Approaches, Antiviral Therapy, 7, 4, 2002. Crossref

  91. Stünkel Walter, Bernard Hans-Ulrich, The Chromatin Structure of the Long Control Region of Human Papillomavirus Type 16 Represses Viral Oncoprotein Expression, Journal of Virology, 73, 3, 1999. Crossref

  92. Goetze S., Gluch A., Benham C., Bode J., Computational and in Vitro Analysis of Destabilized DNA Regions in the Interferon Gene Cluster:  Potential of Predicting Functional Gene Domains, Biochemistry, 42, 1, 2003. Crossref

  93. Chunduri Alekhya Rani, Rajan Resma, Lima Anugata, Ramamoorthy Senthilkumar, Mamillapalli Anitha, Dynamics of nuclear matrix attachment regions during 5th instar posterior silk gland development in Bombyx mori, BMC Genomics, 23, 1, 2022. Crossref

  94. Townson Steven M., Kang Kaiyan, Lee Adrian V., Oesterreich Steffi, Structure-Function Analysis of the Estrogen Receptor α Corepressor Scaffold Attachment Factor-B1, Journal of Biological Chemistry, 279, 25, 2004. Crossref

  95. Schubeler Dirk, Mielke Christian, Bode Jurgen, Excision of an integrated provirus by the action of FLP recombinase, In Vitro Cellular & Developmental Biology - Animal, 33, 10, 1997. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain