Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.737 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i9.60
pages 885-903

ASSESSMENT OF ATOMIZATION MODELS FOR DIESEL ENGINE SIMULATIONS

S. Som
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607-7022
Suresh Aggarwal
Department of Mechanical and Industrial Engineering University of Illinois at Chicago

SINOPSIS

Liquid fuel injection and atomization have a significant influence on the combustion and emission characteristics of diesel engines. Using x-ray radiography, it is possible to obtain quantitative and time-resolved data in the primary breakup region close to the injector nozzle. However, most previous studies on model validations have employed optical measurements that are not applicable in this dense spray region. In the present study, atomization models, based on Kelvin-Helmholtz and Rayleigh-Taylor instabilities, are extensively validated using x-ray and optical measurements for non-evaporating sprays, as well as detailed measurements for evaporating sprays. The data include spray penetration, axial velocity, liquid mass distribution, cone angle, Sauter mean diameter, and vapor penetration. Simulations are performed using a computational fluid dynamics (CFD) code "CONVERGE", which employs an innovative grid generation technique, and state-of-the-art spray models. Postprocessing tools are developed to facilitate a detailed comparison of predictions with x-ray and optical measurements. The effect of rate of injection uncertainties on spray evolution is also quantified. Although the model globally reproduced the experimentally observed trends and the effects of various parameters on atomization and spray characteristics, it underpredicted spray dispersion, especially for non-evaporating sprays, indicating the need for further model development. In addition, the model could not capture the experimental trends in terms of the effects of nozzle orifice geometry on spray development, implying that effects of cavitation and turbulence generated inside the injector need to be included in the model.


Articles with similar content:

COMBINED SPRAY MODEL FOR GASOLINE DIRECT INJECTION HOLLOW-CONE SPRAYS
Atomization and Sprays, Vol.20, 2010, issue 4
D. Martin, Reinhold Kneer, Philipp Pischke
LINKING NOZZLE FLOW WITH SPRAY CHARACTERISTICS IN A DIESEL FUEL INJECTION SYSTEM
Atomization and Sprays, Vol.8, 1998, issue 3
Manolis Gavaises, C. Arcoumanis
A NOVEL SPRAY MODEL VALIDATION METHODOLOGY USING LIQUID-PHASE EXTINCTION MEASUREMENTS
Atomization and Sprays, Vol.25, 2015, issue 5
Gina M. Magnotti, Caroline L. Genzale
TRANSIENT MULTIDIMENSIONAL MODELING OF AIR-BLAST ATOMIZERS
Atomization and Sprays, Vol.13, 2003, issue 4
Louis M. Chiappetta, David P. Schmidt, Ravi K. Madabhushi, Graham M. Goldin
NUMERICAL STUDIES OF AIR-ASSISTED SPRAYS
Atomization and Sprays, Vol.12, 2002, issue 4
Dar-Lon Chang, Chia-Fon Lee