Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.737 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v17.i7.30
pages 621-640

GASOLINE SPRAYS IN UNIFORM CROSSFLOW

J. M. Nouri
School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V0HB
Jim H. Whitelaw
Thermofluids Section, Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BX, United Kingdom

SINOPSIS

Sprays from a gasoline direct injector into a chamber at atmospheric pressure with an injection duration of 3.2 ms and a uniform 11 m/s crossflow have been visualized by a high-resolution CCD camera, and the velocity and droplet characteristics measured with a phase Doppler anemometer. The images show that smaller droplets were displaced in the direction of the crossflow by 5.6, 6.9, and 7.6 mm for injection pressures of 30, 50, and 80 bar, respectively, 1.5 ms after the start of injection. These values increased with time. The crossflow decreased the penetration on the incident side of the cone spray and caused a small increase on the lee side. The local measurements confirm the displacement of droplets of diameter and velocity less than around 27 μm and 22 m/s, respectively, by the crossflow at an injection pressure of 30 bar and the corresponding values at 80 bar were 20 μm and 25 m/s. The radial distributions of droplet mean velocity showed a clear shift of mean velocity profile on the order of 15 mm in the direction of crossflow for 30 and 80 bar injection pressures at axial locations 60 and 80 mm, respectively. The results are directly relevant to gasoline engines with combinations of swirl and tumble and early injection. The spray will be shorter with the higher cylinder pressures of late injection and the ratio of cross-flow to spray momentum will be higher so that the effects will be larger.


Articles with similar content:

SPRAY STRUCTURE FROM DOUBLE FUEL INJECTION IN MULTIHOLE INJECTORS FOR GASOLINE DIRECT-INJECTION ENGINES
Atomization and Sprays, Vol.19, 2009, issue 6
Nicholas Mitroglou, J. M. Nouri, C. Arcoumanis
TIME-RESOLVED CHARACTERIZATION OF LOW-PRESSURE PULSED INJECTOR
Atomization and Sprays, Vol.26, 2016, issue 8
Pramod S. Mehta, Rohit Singh Pathania, Satyanarayanan R. Chakravarthy
GASOLINE INJECTION AGAINST SURFACES AND FILMS
Atomization and Sprays, Vol.7, 1997, issue 4
D. S. Whitelaw, Jim H. Whitelaw, C. Arcoumanis
IMPROVED ATOMIZATION USING VARIABLE ASPECT RATIO AIR SWIRLERS
Atomization and Sprays, Vol.29, 2019, issue 7
Srikrishna Sahu, Thirumalachari Sundararajan, Shraddha Sharma
MACROSCOPIC AND MICROSCOPIC CHARACTERISTICS OF GASOLINE AND BUTANOL SPRAY ATOMIZATION UNDER ELEVATED AMBIENT PRESSURES
Atomization and Sprays, Vol.28, 2018, issue 9
Yanfei Li, Hengjie Guo, Yitao Shen, Liuyang Feng, Xiao Ma, Longfei Chen