Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.737 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2017019656
pages 707-722

QUANTIFYING THE EFFECTS OF FUEL COMPOSITIONS AND PROCESS VARIABLES ON PLANAR SURFACE AREA AND SPRAY NONUNIFORMITY VIA COMBINED MIXTURE-PROCESS DESIGN OF EXPERIMENT

Longfei Chen
School of Energy and Power Engineering, Energy and Environment International Center, Beihang University, 100091, China
Liuyang Feng
School of Energy and Power Engineering, Energy and Environment International Center, Beihang University, 100091, China
Zhixin Liu
School of Energy and Power Engineering, Beihang University, Beijing, China
Guangze Li
School of Energy and Power Engineering, Beihang University, Beijing, China
Yanfei Li
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
Yiji Lu
Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle, NE1 7RU, United Kingdom
Anthony Paul Roskilly
Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle, NE1 7RU, United Kingdom

SINOPSIS

The planar surface area and the spray nonuniformity are important parameters for determining spray evaporation characteristics. In this study, the effects of fuel compositions and two process variables (the injection pressure and axial distance from the measurement plane to the nozzle exit) on both planar surface area and spray nonuniformity were experimentally investigated via statistical extinction tomography. The design of experiment (DoE) was adopted to design the experiment procedure and analyze the data in a systematic way by establishing quadratic mixture models crossed with a linear process model. The planar surface area and the spray nonuniformity were calculated from spatial distributions of surface area density at three measurement planes, which were obtained by using an optical patternator SETSCAN OP-200. The results demonstrated that the axial distance had a significant influence on the planar surface area; whereas, the injection pressure did not show a definite trend for all the test fuels, yet the interaction between the injection pressure and fuel compositions played a noticeable role in determining the planar surface area. The spray nonuniformity was primarily influenced by injection pressure, while it exhibited little dependence on the axial distance. In general, the higher the injection pressure, the higher the spray nonuniformity would be. Fuel composition had an appreciable effect on the spray nonuniformity as well. The DoE-derived models were statistically significant according to analysis of variance analysis, and the optimal values in terms of planar surface area and spray nonuniformity were determined via numerical optimization.


Articles with similar content:

IMPINGEMENT FLUX UNIFORMITY IN NOZZLE SPRAYING FOR INDUSTRIAL APPLICATIONS
Atomization and Sprays, Vol.23, 2013, issue 9
Miroslav Raudensky, Ampere A. Tseng, Bo Li
UNSTEADINESS IN EFFERVESCENT SPRAYS
Atomization and Sprays, Vol.9, 1999, issue 1
John T. K. Luong
EXPERIMENTAL INVESTIGATION ON NEAR-FIELD BREAKUP CHARACTERISTICS OF HYBRID-MIXED TWIN-FLUID ATOMIZER
Atomization and Sprays, Vol.28, 2018, issue 10
T. Y. Li, Shiyan Li, X. Y. Yang, Yi Gao, C. Fu
EFFERVESCENT ATOMIZER OPERATION AND SPRAY CHARACTERISTICS
Atomization and Sprays, Vol.3, 1993, issue 2
J. D. Whitlow, Arthur H. Lefebvre
A NEW QUALITY METHODOLOGY AND METRICS FOR SPRAY PATTERN ANALYSIS
Atomization and Sprays, Vol.21, 2011, issue 3
Ingo W. Scheer, Claudia Beaumont