Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i11.10
pages 997-1012

NEAR-WALL CHARACTERISTICS OF AN IMPINGING GASOLINE SPRAY AT INCREASED AMBIENT PRESSURE AND WALL TEMPERATURE

Jochen Stratmann
Institute of Heat and Mass Transfer, RWTH Aachen University, Germany
D. Martin
Institute of Heat and Mass Transfer, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany
P. Unterlechner
Institute of Heat and Mass Transfer, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany
Reinhold Kneer
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52062 Aachen, Germany

SINOPSIS

With a focus on the direct-injection gasoline (GDI) engine, this work provides near-wall spray details of the liquid phase of an impinging fuel spray at GDI engine conditions. The experiments are conducted in a constant volume pressure chamber at elevated gas pressure (pgas = 0.6 and 1.5 MPa), increased gas temperature (Tgas = 500 K), and variable wall temperature (Tw = 400 and 575 K). Using phase-Doppler anemometry, temporally and spatially resolved mean droplet sizes and velocity components are determined at distances from 0.2 to 1.0 mm above the surface. The transient behavior of the wall jet, which develops along the surface, is resolved by the measurements. The formation of a vortex at the front of this jet is observed. At its tip, large mean droplet diameters are observed that coincide with a rapid change of the wall-normal velocity. An increasing wall temperature causes the tip of the wall jet to propagate slower along the wall, which is apparently caused by a change in the local density of the gas above the surface.