Suscripción a Biblioteca: Guest
Computational Thermal Sciences: An International Journal

Publicado 6 números por año

ISSN Imprimir: 1940-2503

ISSN En Línea: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

EFFECT OF VARIABLE PROPERTIES ON HEAT TRANSFER IN A MICRO-CHANNEL WITH A SYNTHETIC JET

Volumen 5, Edición 5, 2013, pp. 369-388
DOI: 10.1615/ComputThermalScien.2013004094
Get accessGet access

SINOPSIS

The effect of variable properties on thermal enhancement in a micro-channel due to synthetic jet and cross-flow fluid interaction is examined. Three-dimensional simulation is performed for low Reynolds number flow of water subjected to localized heating at the top surface of the micro-channel when a silicon wafer is etched. The complex conjugate heat transfer between the silicon substrate and water flow is analyzed. Axial conduction introduced by the thermal conductivity, density, and heat capacity temperature dependence of silicon is included. Computational results for the case of variable properties are compared against those of constant properties in both steady-state and transient conditions. The velocity field in the channel is found to be greatly influenced by the temperature distribution when the variable transport properties of water are taken into account. Numerical results of 30 full cycles of the actuator are simulated in order to track the development of the fluid flow and heat transfer. Quasi-steady results, which indicate the maximum cooling potential of a single synthetic jet actuator, are presented. The maximum, minimum, and average temperature profiles show a consistent reducing trend between the solutions of the variable and constant properties.

CITADO POR
  1. Prabhu Sharad V., Mahulikar Shripad P., Effects of density and thermal conductivity variations on entropy generation in gas micro-flows, International Journal of Heat and Mass Transfer, 79, 2014. Crossref

  2. Mohammadpour Javad, Lee Ann, Mozafari M., Zargarabadi Mehran Rajabi, Mujumdar Arun S., Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian–Lagrangian models, International Journal of Thermal Sciences, 161, 2021. Crossref

  3. Mohammadpour Javad, Lee Ann, Investigation of nanoparticle effects on jet impingement heat transfer: A review, Journal of Molecular Liquids, 316, 2020. Crossref

  4. Lau G.E., Mohammadpour J., Lee A., Cooling performance of an impinging synthetic jet in a microchannel with nanofluids: An Eulerian approach, Applied Thermal Engineering, 188, 2021. Crossref

Próximos Artículos

Positivity Preserving Analysis of Central Schemes for Compressible Euler Equations Souren Misra, Alok Patra, Santosh Kumar Panda A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain