Suscripción a Biblioteca: Guest
Computational Thermal Sciences: An International Journal

Publicado 6 números por año

ISSN Imprimir: 1940-2503

ISSN En Línea: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

NUMERICAL ANALYSIS OF THE FLUID-DYNAMIC BEHAVIOR OF A SUBMERGED PLATE WAVE ENERGY CONVERTER

Volumen 6, Edición 6, 2014, pp. 525-534
DOI: 10.1615/ComputThermalScien.2014010456
Get accessGet access

SINOPSIS

The need for clean and renewable energy sources has nowadays contributed to give relevance to the study of sea wave energy. In this context, the present work brings a computational modeling to analyze the fluid-dynamic behavior of a submerged plate wave energy converter. Basically, its operating principle consists in the passage of sea waves through a horizontal submerged plate, generating a flow under it where a turbine is placed, converting mechanical energy into electrical energy. The numerical model uses the software GAMBIT and FLUENT. In the latter, which is based on the finite volume method (FVM), the methodology used to represent the air−water interaction in the numerical simulations of the device is the multiphase volume of fluid (VOF) method. The objective of this paper is to analyze the influence of the opening ratio under the submerged plate with regard to its efficiency. To do so, the model, after verification and validation processes, was used in six simulations that differ from each other only in the vertical position of the plate in a wave tank. Results showed that a 5% increase in the opening ratio may produce an approximately 93% increase in the efficiency of the converter. In addition, a physical restriction was inserted under the plate, representing the pressure drop caused by a turbine, and other cases were simulated. These results indicate that a reduction of around 76% in the free region under the plate causes a decrease of only 5.5% in the submerged plate efficiency.

CITADO POR
  1. Windt Christian, Davidson Josh, Ringwood John V., High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks, Renewable and Sustainable Energy Reviews, 93, 2018. Crossref

  2. das N. Gomes M., Lorenzini G., Rocha L. A. O., dos Santos E. D., Isoldi L. A., Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods, Journal of Engineering Thermophysics, 27, 2, 2018. Crossref

  3. Gomes Mateus das Neves, Espinel Lara Maria Fernanda, Iahnke Silvana Letícia Pires, Neves Machado Bianca, Moraes Goulart Marcelo, Medeiros Seibt Flávio, dos Santos Elizaldo Domingues, Isoldi Liércio André, Rocha Luiz Alberto Oliveira, Numerical Approach of the Main Physical Operational Principle of Several Wave Energy Converters: Oscillating Water Column, Overtopping and Submerged Plate, Defect and Diffusion Forum, 362, 2015. Crossref

  4. Kharati-Koopaee Masoud, Kiali-Kooshkghazi Mehdi, Assessment of Plate-Length Effect on the Performance of the Horizontal Plate Wave Energy Converter, Journal of Waterway, Port, Coastal, and Ocean Engineering, 145, 1, 2019. Crossref

Próximos Artículos

Positivity Preserving Analysis of Central Schemes for Compressible Euler Equations Souren Misra, Alok Patra, Santosh Kumar Panda A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain