Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 1.4

ISSN Imprimir: 1940-2503
ISSN En Línea: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2020026228
pages 79-97

NUMERICAL SOLUTIONS FOR AXISYMMETRIC NON-NEWTONIAN STAGNATION ENROBING FLOW, HEAT, AND MASS TRANSFER WITH APPLICATION TO CYLINDRICAL PIPE COATING DYNAMICS

O. Anwar Bég
Aeronautical and Mechanical Engineering, University of Salford, Manchester, M54WT, UK
Rama Bhargava
Mathematics Department, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
Sapna Sharma
School of Mathematics, Thapar University, Patiala, Punjab 147001, India
T. A. Bég
Computational Mechanics and Renewable Energy, Dickenson Road, Manchester, M13, UK
MD. Shamshuddin
Department of Mathematics, Vaagdevi College of Engineering (Autonomous), Warangal, Telangana, India.
Ali Kadir
Aeronautical and Mechanical Engineering, University of Salford, Manchester, M54WT, UK

SINOPSIS

Heat and mass transfer in variable thermal conductivity micropolar axisymmetric stagnation enrobing flow on a cylinder is studied. Numerical solutions are obtained with an optimized variational finite-element procedure and also a finite-difference method. Graphical variations of velocity, angular velocity, temperature, and concentration are presented for the effects of Reynolds number, viscosity ratio, curvature parameter, Prandtl number, and Schmidt number. Excellent agreement is obtained for both finite-element method (FEM) and finite-difference method (FDM) computations. Further validation is achieved with a Chebyshev spectral collocation method (SCM). Skin friction is elevated with greater Reynolds number, whereas it is suppressed with increasing micropolar parameter. The heat transfer rate decreases with an increase in the thermal conductivity parameter. Temperature and thermal boundary layer thickness are reduced with increasing thermal conductivity parameter and Reynolds number. A greater Reynolds number accelerates the microrotation values. A higher Schmidt number reduces the mass transfer function (species concentration) values. The mathematical model is relevant to polymeric manufacturing coating (enrobing) flows.

REFERENCIAS

  1. Baag, S., Mishra, S.R., Dash, G.C., and Acharya, M.R., Numerical Investigation on MHD Micropolar Fluid Flow toward a Stag-nation Point on a Vertical Surface with Heat Source and Chemical Reaction, J. KingSaudEng. Sci., vol. 29, pp. 75-83,2017.

  2. Bean, M.J., Manufacturing Processes, Enrobing, in Science and Technology of Enrobed and Filled Chocolate, Confectionery and Baked Products, G. Talbot, Ed., Cambridge, UK: Woodhead Publishing in Food Science, Technology and Nutrition, pp. 362-396,2009.

  3. Beg, O.A., Bakier, A.Y., and Prasad, V.R., Numerical Study of Free Convection Magnetohydrodynamic Heat and Mass Transfer from a Stretching Surface to a Saturated Porous Medium with Soret and Dufour Effects, Comput. Math. Sci., vol. 46, no. 1, pp. 57-65,2009.

  4. Beg, O.A., Bhargava, R., and Rashidi, M.M., Numerical Simulation in Micropolar Fluid Dynamics, Saarbrucken, Germany: Lambert, 2011.

  5. Beg O.A., Bhargava, R., Rawat, S., Takhar, H.S., and Halim, M.K., Computational Modeling of Biomagnetic Micropolar Blood Flow and Heat Transfer in a Two-Dimensional Non-Darcian Porous Medium, Meccanic., vol. 43, no. 4, pp. 391-410,2008.

  6. Beg, O.A., Hameed, M., and Beg, T.A., Chebyshev Spectral Collocation Simulation of Nonlinear Boundary Value Problems in Electrohydrodynamics, Int. J. Comput. Methods Eng. Sci. Mech, vol. 14, pp. 104-115,2013.

  7. Beg, O.A., Mabood, F., and Islam, M.N., Homotopy Simulation of Nonlinear Unsteady Rotating Nanofluid Flow from a Spinning Body, Int. J. Eng. Math, vol. 2015, Article ID: 272079 (15 pages), 2015.

  8. Beg, O.A., Zueco J., and Chang, T.B., Numerical Analysis of Hydromagnetic Gravity-Driven Thin Film Micropolar Flow along an Inclined Plane, Chem. Eng. Commun., vol. 198, no. 3, pp. 312-331,2010.

  9. Beg, T.A., Beg, O.A., Rashidi, M.M., and Asadi, M., Homotopy Semi-Numerical Modelling of Nanofluid Convection Flow from an Isothermal Spherical Body in a Permeable Regime, Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom., vol. 3, no. 4, pp. 67-96,2012.

  10. Cunningham, F.E., Developments in Enrobed Products, Processing of Poultry, Chapter 10, pp. 325-359, London: Chapman and Hall, 1995.

  11. Das, M., Jain, V.K., and Ghoshdastidar, P.S., Computational Fluid Dynamics Simulation and Experimental Investigations into the Magnetic Field Assisted Nano-Finishing Process, Proc. IMechEPart B: J. Eng. Manufact., vol. 226, pp. 1143-1158,2012.

  12. Deen, W.M., Analysis of Transport Phenomena, Oxford, UK: Oxford University Press, 1998.

  13. Dietl, C., Winter, E.R.F., and Viskanta, R., An Efficient Simulation of the Heat and Mass Transfer Processes during Drying of Capillary Porous, Hygroscopic Materials, Int. J. Heat Mass Transf., vol. 41, pp. 3611-3625,1998.

  14. Dowding, C.F. and Lawrence, J., Use of Thin Laminar Liquid Flows above Ablation Area for Control of Ejected Material during Excimer Machining, Proc. IMechE Part B: J. Eng. Manufact, vol. 223, pp. 759-773,2009.

  15. Edwards, D.A. and Brenner, H., Interfacial Transport Processes andRheology, Oxford, UK: Butterworth-Heinemann, 1993.

  16. Eringen, A.C., Simple Microfluids, Int. J. Eng. Sci, vol. 2, pp. 200-207,1964.

  17. Eringen, A.C., Theory of Micropolar Fluids, J. Math. Mech., vol. 16, pp. 1-18,1966.

  18. Eringen, A.C., Theory of Thermomicrofluids, Math. Anal. Appl. J., vol. 38, pp. 480-496,1972.

  19. Eringen, A.C., Micro-Continuum Field Theories, Volume II: Fluent Media, New York: Springer-Verlag, 2002.

  20. Fedorov, A.G. and Viskanta, R., Heat and Mass Transfer and Adsorption Dynamics in a Honeycomb Absorbent: Application of the Simplified Local Density Model, Therm. Sci. Eng. J., vol. 6, no. 1, pp. 1-9,1998.

  21. Fedorov, A.G. and Viskanta, R., Combined Heat and Mass Transfer and Adsorption Dynamics in the Microchannel Adsorption Reactor, Microscale Thermophys. Eng., vol. 3, no. 2, pp. 111-140,1999.

  22. Ghaly, A.Y. and Seddeek, M.A., Chebyshev Finite Difference Method for the Effect of Reaction, Heat and Mass Transfer on Laminar Flow along a Semi-Infinite Horizontal Plate with Temperature Dependent Viscosity, Chaos, Solitons Fractals, vol. 19, pp. 61-70,2004.

  23. Gorla, R.S.R. and Hassanien, I.A., Mixed Convection Boundary Layer Flow of a Micropolar Fluid near a Stagnation Point on a Horizontal Cylinder, Int. J. Eng. Sci, vol. 28, pp. 153-161,1990.

  24. Gray, M.P., Industrial Chocolate Manufacture and Use, Moulding, Enrobing and Cooling Chocolate Products, Oxford, UK: Wiley Blackwell, 2009.

  25. Grigoropoulos, C.P., Bennett, T.D., Ho, J.R., Xu, X., and Zhang, X., Heat and Mass Transfer in Pulsed-Laser-Induced Phase Transformation, Adv. Heat Transf., vol. 28, pp. 75-134,1996.

  26. Gupta, D., Kumar, L., Beg, O.A., and Singh, B., Finite Element Simulation of Mixed Convection Flow of Micropolar Fluid over a Shrinking Sheet with Thermal Radiation, Proc. IMechEPart E: J. Process Mech. Eng., vol. 228, pp. 61-72,2014.

  27. Hassanien, I.A. and Salma, A.A., Flow and Heat Transfer of a Micropolar Fluid in an Axisymmetric Stagnation Flow on a Cylinder, Energy Convers. Manage., vol. 38, pp. 301-310,1997.

  28. Hoque, M.M., Alam, M.M., Ferdows, M., and Beg, O.A., Numerical Simulation of Dean Number and Curvature Effects on Magneto-Biofluid Flow through a Curved Conduit, Proc. IMechE-PartH: J. Eng. Med., vol. 227, pp. 1155-1170,2013.

  29. Hoyt, J.W. and Fabula, A.G., The Effect of Additives on Fluid Friction, U.S. Naval Ordinance Test Station Report, United States Navy, Delaware, USA, 1964.

  30. Iqbal, Z., Mehmood, R., Azhar, E., and Mehmood, Z., Impact of Inclined Magnetic Field on Micropolar Casson Fluid Using Keller Box Algorithm, Euro. Phys. J Plus, vol. 132,2017. DOI: 10.1140/epjp/i2017-11443-7.

  31. Kelson, N.A. and Farrell, T.W., Micropolar Flow over a Porous Stretching Sheet with Strong Suction or Injection, Int. Commun. Heat Mass Transf., vol. 28, pp. 479-488,2001.

  32. Mansour, M.A., El-Hakiem, M.A., and El Kabeir, S.M., Heat and Mass Transfer in Magneto-Hydrodynamic Flow of Micropolar Fluid on a Circular Cylinder with Uniform Heat and Mass Flux, J. Magnet. Magnet. Mater., vol. 220, pp. 259-270,2000.

  33. Mehmood, Z., Mehmood, R., and Iqbal, Z., Numerical Investigation of Micropolar Casson Fluid over a Stretching Sheet with Internal Heating, Commun. Theor. Phys, vol. 67, no. 4, pp. 443-448,2017.

  34. Mehmood, R., Nadeem, S., and Masood, S., Effects of Transverse Magnetic Field on a Rotating Micropolar Fluid between Parallel Plates with Heat Transfer, J. Magnet. Magnet. Mater., vol. 401, pp. 1006-1014,2016.

  35. Mihic, S.D., Cioc, S., Marinescu, I.D., and Weismiller, M.C., Detailed Study of Fluid Flow and Heat Transfer in the Abrasive Grinding Contact Using Computational Fluid Dynamics Methods, ASME J. Manufact. Sci. Eng., vol. 135, Article ID 041002, 2013.

  36. Mishra, S.R., Baag, S., and Mohapatra, D.K., Chemical Reaction and Soret Effects on Hydromagnetic Micropolar Fluid along a Stretching Sheet, Eng. Sci. Technol, Int. J, vol. 19, no. 4, pp. 1919-1928,2016.

  37. Mishra, S.R., Dash, G.C., and Pattnaik, P.K., Flow of Heat and Mass Transfer on MHD Free Convection in a Micropolar Fluid with Heat Source, Alexandria Eng. J., vol. 54, no. 3, pp. 681-689,2015.

  38. Parthasarathy, A. and Malkin, S., Effect of Fluid Application Conditions on Grinding Behaviour, Proc. IMechE Part B: J. Eng. Manufact., vol. 224, pp. 225-235,2010.

  39. Prasad, V.R., Gaffar, S.A., and Beg, O.A., Heat and Mass Transfer of a Nanofluid from a Horizontal Cylinder to a Micropolar Fluid, AIAA J. Thermophys. Heat Transf., vol. 29, no. 1, pp. 127-139,2015.

  40. Rana, P., Bhargava, R., and Beg, O.A., Finite Element Modelling of Conjugate Mixed Convection Flow of Al2O3-Water Nanofluid from an Inclined Slender Hollow Cylinder, Physica Scripta, vol. 87, no. 5, article ID 055005 (15 pages), 2013a.

  41. Rana, P., Bhargava, R., and Beg, O.A., Finite Element Simulation of Unsteady Magneto-Hydrodynamic Transport Phenomena on a Stretching Sheet in a Rotating Nanofluid, Proc. IMechE: PartN: J. NanoengineeringandNanosystems, vol. 227, pp. 277-299, 2013b.

  42. Rashidi, M.M., Ferdows, M., Uddin, M.J., Beg, O.A., and Rahimzadeh, N., Group Theory and Differential Transform Analysis of Mixed Convective Heat and Mass Transfer from a Horizontal Surface with Chemical Reaction Effects, Chem. Eng. Commun, vol. 199, pp. 1012-1043,2012.

  43. Rashidi, M.M., Keimanesh, M., Beg, O.A., and Hung, T.K., Magnetohydrodynamic Biorheological Transport Phenomena in a Porous Medium: A Simulation of Magnetic Blood Flow Control and Filtration, Int. J. Numer. Methods Biomed. Eng., vol. 27, pp. 805-821,2011.

  44. Rawat, S.,Bhargava,R.,Bhargava,Renu., and Beg, O.A., Transient Magneto-Micropolar Free Convection Heat and Mass Transfer through a Non-Darcy Porous Medium Channel with Variable Thermal Conductivity and Heat Source Effects, Proc. IMechEPart C-J. Mech. Eng. Sci., vol. 223, pp. 2341-2355,2009.

  45. Reddy, J.N., An Introduction to the Finite Element Method, New York: McGraw-Hill, 1985.

  46. Rout, P.K., Sahoo, S.N., Dash, G.C., and Mishra, S.R., Chemical Reaction Effect on MHD Free Convection Flow in a Micropolar Fluid, Alexandria Eng. J, vol. 55, no. 3, pp. 2967-2973,2016.

  47. Schlichting, H., Boundary Layer Theory, 6th Edition, New York: McGraw-Hill, 1979.

  48. Tan, W., Bailey, N.S., and Shih, Y.C., Numerical Modeling of Transport Phenomena and Dendritic Growth in Laser Spot Conduction Welding of 304 Stainless Steel, ASME J. Manufact. Sci. Eng., vol. 134, Article ID 041010,2012.

  49. Tien, C.L. and Campbell, D.T., Heat and Mass Transfer from Rotating Cones, J. Fluid Mech., vol. 17, pp. 105-112,1963.

  50. Trefethen, N.L., Spectral Methods in MATLAB, Philadelphia, PA: SIAM Press, 2000.

  51. Uddin, M.J., Yusoff, N.H.M., Beg, O.A., and Ismail, A.I.M., Lie Group Analysis and Numerical Solutions for Non-Newtonian Nanofluid Flow in a Porous Medium with Internal Heat Generation, Physica Scripta, vol. 87, Article ID 025401,2013.

  52. Wahiduzzaman, M., Alam, M.M., Ferdows, M., Sivasankaran, S., and Beg, O.A., Spectral Numerical Study of Non-Isothermal Flow in a Rotating Rectangular Cross-Section Duct, Int. J. Appl. Math Mech, vol. 9, no. 24, pp. 1-18,2013.

  53. Zueco, J., Beg, O.A., and Takhar, H.S., Network Numerical Analysis of Magneto-Micropolar Convection through a Vertical Circular Non-Darcian Porous Medium Conduit, Comput. Mater. Sci., vol. 46, no. 4, pp. 1028-1037,2009.


Articles with similar content:

UNSTEADY MHD MIXED CONVECTION STAGNATION‐POINT FLOW IN A MICROPOLAR FLUID ON A VERTICAL SURFACE IN A POROUS MEDIUM WITH SORET AND DUFOUR EFFECTS
Heat Transfer Research, Vol.44, 2013, issue 7
Abdul Rahman M. Kasim, Aurang Zaib, N. F. Mohammad, Sharidan Shafie
MAGNETO-NANOFLUID FLOW DUE TO BIDIRECTIONAL STRETCHING SURFACE IN A POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 5
Muhammad Faisal, Tariq Javed, Iftikhar Ahmad
DUFOUR–SORET AND THERMOPHORETIC EFFECTS ON MAGNETOHYDRODYNAMIC MIXED CONVECTION CASSON FLUID FLOW OVER A MOVING WEDGE AND NON-UNIFORM HEAT SOURCE/SINK
International Journal of Fluid Mechanics Research, Vol.45, 2018, issue 1
Rakesh Choudhary, Rakesh Choudhary
VISCOUS DISSIPATION AND JOULE HEATING INFLUENCES PAST A STRETCHING SHEET IN A POROUS MEDIUM WITH THERMAL RADIATION SATURATED BY SILVER–WATER AND COPPER–WATER NANOFLUIDS
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 2
Manoj Kumar, Ashish Mishra
THERMAL RADIATION EFFECT ON INCLINED ARTERIAL BLOOD FLOW THROUGH A NON-DARCIAN POROUS MEDIUM WITH MAGNETIC FIELD
First Thermal and Fluids Engineering Summer Conference, Vol.17, 2015, issue
Madhu Sharma, R. K. Gaur, Bhupendra K. Sharma