Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

XFEM SIMULATION OF FATIGUE CRACK GROWTH IN ALUMINUM ZIRCONIA REINFORCED COMPOSITES

Volumen 17, Edición 5, 2019, pp. 469-481
DOI: 10.1615/IntJMultCompEng.2019029470
Get accessGet access

SINOPSIS

The effects of particles as reinforcement on fatigue crack growth behavior of Al 6061/ZrO2 composite material was investigated by the eXtended Finite Element Method (XFEM). This developed methodology represents the entire crack independently, so remeshing is not necessary. Results show that the crack propagation rate increased as volume fraction increased. The same trend was also observed as the particle size decreased in a constant volume fraction. The stress values within the reinforcements were much higher than that in the matrix, and as a consequence, the transferred load to the reinforcing particles slowed down the crack propagation speed by reduction in the stress concentration at the crack tip, and thus enhanced fatigue performance.

REFERENCIAS
  1. Abdizadeh, H. and Baghchesara, M.A., Investigation on Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy Based ZrO2 Particle Reinforced Metal-Matrix Composites, Ceram. Int., vol. 39, no. 2, pp. 2045-2050,2013.

  2. Aigbodion, V.S., Atuanya, C.U., Obiorah, S.O., Isah, L.A., Neife, S.I., and Omah, A.D., Effect of Particle Size on the Fatigue Behaviour of Al-Cu-Mg/Bean Pod Ash Particulate Composites, T. Indian I. Metals, vol. 68, no. 3, pp. 495-499, 2015.

  3. Areias, P.M.A. and Belytschko, T., Analysis of Three-Dimensional Crack Initiation and Propagation Using the Extended Finite Element Method, Int. J. Numer. Meth. Eng., vol. 63, no. 5, pp. 760-788, 2005.

  4. Ayyar, A. and Chawla, N., Microstructure-Based Modeling of Crack Growth in Particle Reinforced Composites, Compos. Sci. Technol., vol. 66, no. 13, pp. 1980-1994, 2006.

  5. Ayyar, A., Crawford, G.A., Williams, J.J., and Chawla, N., Numerical Simulation of the Effect of Particle Spatial Distribution and Strength on Tensile Behavior of Particle Reinforced Composites, Comp. Mater. Sci., vol. 44, no. 2, pp. 496-506, 2008.

  6. Belytschko, T. and Black, T., Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Meth. Eng., vol. 45, no. 5, pp. 601-620, 1999.

  7. Bergner, F. and Zouhar, G., A New Approach to the Correlation between the Coefficient and the Exponent in the Power Law Equation of Fatigue Crack Growth, Int. J. Fatigue, vol. 22, no. 3, pp. 229-239,2000.

  8. Bhattacharya, S., Singh, I.V., and Mishra, B.K., Fatigue-Life Estimation of Functionally Graded Materials Using XFEM, Eng. Comput, vol. 29, no. 4, pp. 427-448, 2013.

  9. Boselli, J., Pitcher, P.D., Gregson, P. J., and Sinclair, I., Numerical Modelling of Particle Distribution Effects on Fatigue in Al-SiCp Composites, Mat. Sci. Eng. A, vol. 300, nos. 1-2, pp. 113-124,2001.

  10. Bush, M.B., The Interaction between a Crack and a Particle Cluster, Int. J. Fracture, vol. 88, no. 3, pp. 215-232,1997.

  11. Daux, C., Moes, N., Dolbow, J., Sukumar, N., and Belytschko, T., Arbitrary Branched and Intersecting Cracks with the Extended Finite Element Method, Int. J. Numer. Meth. Eng., vol. 48, no. 12, pp. 1741-1760, 2000.

  12. Du, P.X., Liang, Y.L., Yin, C.H., Zhong, L.Q., and Fan, H.J., Finite Element Analysis on the Crack Growth and Stress Intensity Factor for the Contact Fatigue, IOPPublishing, IOP Conf. Ser.: Mater. Sci. Eng., Barcelona, Spain, vol. 230, p. 012038, 2017.

  13. Erdogan, F. and Sih, G.C., On the Crack Extension in Plates under Plane Loading and Transverse Shear, J. Basic Eng., vol. 85, no. 4, pp. 519-525,1963.

  14. Ferte, G., Massin, P., and Moes, N., 3D Crack Propagation with Cohesive Elements in the Extended Finite Element Method, Comput. Methods Appl. Mech. Eng., vol. 300, pp. 347-374, 2016.

  15. Formica, G. and Milicchio, F., Crack Growth Propagation Using Standard FEM, Eng. Frac. Mech, vol. 165, pp. 1-18, 2016.

  16. Giner, E., Sukumar, N., Tarancn, J.E., and Fuenmayor, F.J., An Abaqus Implementation of the Extended Finite Element Method, Eng. Fract. Mech, vol. 76, no. 3, pp. 347-368, 2009.

  17. Gravouil, A., Moes, N., and Belytschko, T., Non-Planar 3D Crack Growth by the Extended Finite Element and Level Sets-Part II: Level Set Update, Int. J. Numer. Meth. Eng., vol. 53, no. 11, pp. 2569-2586, 2002.

  18. Hahn, G.T. and Rosenfield, A.R., Metallurgical Factors Affecting Fracture Toughness of Aluminum Alloys, Metall. Trans. A, vol. 6, no. 4, pp. 653-668, 1975.

  19. Hemanth, J., Development and Property Evaluation of Aluminum Alloy Reinforced with Nano-ZrO2 Metal Matrix Composites (NMMCs), Mat. Sci. Eng. A, vol. 507, nos. 1-2, pp. 110-113, 2009.

  20. Huynh, D.B.P. and Belytschko, T., The Extended Finite Element Method for Fracture in Composite Materials, Int. J. Numer. Meth. Eng., vol. 77, no. 2, pp. 214-239, 2009.

  21. Jameel, A. and Harmain, G.A., Fatigue Crack Growth in Presence of Material Discontinuities by EFGM, Int. J. Fatigue, vol. 81, pp. 105-116,2015.

  22. Lepore, M., Carlone, P., Berto, F., and Sonne, M.R., A FEM based Methodology to Simulate Multiple Crack Propagation in Friction Stir Welds, Eng. Fract. Mech, vol. 184, pp. 154-167, 2017.

  23. Li, W., Liang, H., Chen, J., Zhu, S.Q., and Chen, Y.L., Effect of SiC Particles on Fatigue Crack Growth Behavior of SiC Particulate-Reinforced Al-Si Alloy Composites Produced by Spray Forming, Proc. Mat. Sci., vol. 3, pp. 1694-1699, 2014.

  24. Madhusudhan, M., Naveen, G.J., and Mahesha, K., Mechanical Characterization of AA7068-Zr02 Reinforced Metal Matrix Composites, Mater. Today:: Proc., vol. 4, no. 2, pp. 3122-3130,2017.

  25. Moes, N. and Belytschko, T., Extended Finite Element Method for Cohesive Crack Growth, Eng. Fract. Mech, vol. 69, no. 7, pp. 813-833,2002.

  26. Moes, N., Dolbow, J., and Belytschko, T., A Finite Element Method for Crack Growth without Remeshing, Int. J. Numer. Meth. Eng., vol. 46, no. 1, pp. 131-150, 1999.

  27. Petrova, V., Tamuzs, V., and Romalis, N., A Survey of Macro-Microcrack Interaction Problems, Appl. Mech. Rev., vol. 53, no. 5, pp. 117-146,2000.

  28. Ramesh, C.S., Keshavamurthy, R., and Madhusudhan, J., Fatigue Behavior of Ni-P Coated Si3N4 Reinforced Al6061 Composites, Proc. Mat. Sci, vol. 6, pp. 1444-1454, 2014.

  29. Shedbale, A.S., Singh, I.V., and Mishra, B.K., Nonlinear Simulation of an Embedded Crack in the Presence of Holes and Inclusions by XFEM, Procedia Eng., vol. 64, pp. 642-651, 2013.

  30. Shih, C.F. and Asaro, R.J., Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I-Small Scale Yielding, J. Appl. Mech, vol. 55, no. 2, pp. 299-316, 1988.

  31. Singh, I.V., Mishra, B.K., Bhattacharya, S., and Patil, R.U., The Numerical Simulation of Fatigue Crack Growth Using Extended Finite Element Method, Int. J. Fatigue, vol. 36, no. 1, pp. 109-119, 2012.

  32. Singh, I.V., Mishra, B.K., Kumar, S., and Shedbale, A.S., Nonlinear Fatigue Crack Growth Analysis of a Center Crack Plate by XFEM, Adv. Mater. Manuf. Char., vol. 4, no. 1, pp. 11-16,2014.

  33. Sohn, D., Lim, J.H., Cho, Y.S., Kim, J.H., and Im, S., Finite Element Analysis of Quasistatic Crack Propagation in Brittle Media with Voids or Inclusions, J. Comput. Phys., vol. 230, no. 17, pp. 6866-6899, 2011.

  34. Souiyah, M., Muchtar, A., Alshoaibi, A., and Ariffin, A.K., Finite Element Analysis of the Crack Propagation for Solid Materials, Am. J. Appl. Sci., vol. 6, no. 7, p. 1396, 2009.

  35. Stolarska, M., Chopp, D.L., Moes, N., and Belytschko, T., Modelling Crack Growth by Level Sets in the Extended Finite Element Method, Int. J. Numer. Meth. Eng., vol. 51, no. 8, pp. 943-960, 2001.

  36. Sukumar, N., Moes, N., Moran, B., and Belytschko, T., Extended Finite Element Method for Three-Dimensional Crack Modelling, Int. J. Numer. Meth. Eng., vol. 48, no. 11, pp. 1549-1570, 2000.

  37. Tanaka, K., Fatigue Crack Propagation from a Crack Inclined to the Cyclic Tensile Axis, Eng. Fract. Mech., vol. 6, no. 3, pp. 493-507, 1974.

  38. Tokaji, K., Shiota, H., and Kobayashi, K., Effect of Particle Size on Fatigue Behaviour in Sic Particulate-Reinforced Aluminium Alloy Composites, Fatigue Fract. Eng. M, vol. 22, no. 4, pp. 281-288, 1999.

  39. Xiao, Q.Z. and Karihaloo, B.L., Improving the Accuracy of XFEM Crack Tip Fields Using Higher Order Quadrature and Statically Admissible Stress Recovery, Int. J. Numer. Meth. Eng., vol. 66, no. 9, pp. 1378-1410, 2006.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain