Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2018026988
pages 325-343

A MULTISCALE/MULTIDOMAIN MODEL FOR THE FAILURE ANALYSIS OF MASONRY WALLS: A VALIDATION WITH A COMBINED FEM/DEM APPROACH

Emanuele Reccia
University of Cagliari
L. Leonetti
DINCI, University of Calabria, Cosenza, Italy
Patrizia Trovalusci
Department of Structural Engineering and Geotechnics Sapienza University of Rome Via Gramsci 53, 00197 Rome, Italy
Antonella Cecchi
Department of Architecture Construction Conservation (DACC), University IUAV of Venice, Dorsoduro 2206, Venice, 30123, Venice, Italy

SINOPSIS

An accurate and fast failure simulation for masonry walls is still an active field of research, due to its fundamental role in predicting the overall response of masonry structures under seismic and other extreme natural and manoriginated events. Multiscale models have been successfully exploited for achieving this task, being characterized by high computational efficiency, especially in the presence of strong nonlinearities due to multiple microcrack initiation and propagation. In this paper, a novel multiscale/multidomain approach for nonlinear analysis of masonries is presented, based on a couple-stress homogenization for undamaged regions and an adaptive strategy for triggering the macro-to-micro switching operations. An extended validation of the proposed approach is presented, via suitable comparisons with a micromechanical model, here regarded as a benchmark model, that finely describes the microstructure, based on the combined finite/discrete element method (FEM/DEM). A critical discussion of the obtained numerical results has shown the efficacy of the proposed models as well as their limits of application.


Articles with similar content:

INFLUENCE OF EXCITATION METHOD ON THE INTEGRAL CHARACTERISTICS OF THE CIRCULAR PATCH MONOPOLE ANTENNAS
Telecommunications and Radio Engineering, Vol.77, 2018, issue 17
D. V. Mayboroda, A. V. Poznyakov, Sergey Pogarsky, Leonid M. Lytvynenko
Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman
Comparison of Analytical and Experimental Data for Shear Stresses on Fuel Rods
Heat Transfer Research, Vol.41, 2010, issue 5
Benediktas B. Cesna
PROBLEM OF INTERFERENCE OF AN OGIVAL BODY OF REVOLUTION WITH THE WIND-TUNNEL STING AND SPECIFIC FEATURES OF COMPUTING THIS PROBLEM
TsAGI Science Journal, Vol.42, 2011, issue 3
Innokentii Aleksandrovich Kursakov, Sergey Vladimirovich Mikhaylov, Sergey Mikhailovich Bosnyakov, Jurgen Quest, Vladimir Viktorovich Vlasenko
A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
Hongwu Zhang, Zhaoqian Xie