Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i2.30
pages 167-180

A Nonclassical Reddy-Levinson Beam Model Based on a Modified Couple Stress Theory

H. M. Ma
Department of Mechanical Engineering, Texas A & M University, 3123 TAMU, College Station, TX 77843-3123, U.S.A.
Xin-Lin Gao
Texas A&M University
J. N. Reddy
Department of Mechanical Engineering, Texas A&M University, College Station, Texas, TX 77843, USA


A microstructure-dependent, nonclassical Reddy--Levinson (R-L) beam model is developed using a variational formulation based on Hamilton's principle. A modified couple stress elasticity theory is used, which contains a material length scale parameter and enables the new beam model to capture the size effect. Also, the Poisson effect is incorporated in the current beam model, which differs from other R-L beam models. The newly developed nonclassical R-L model reduces to the existing classical elasticity-based R-L model when the material length scale parameter and Poisson's ratio are both taken to be zero. In addition, the current R-L beam model recovers the nonclassical Bernoulli--Euler beam model based on the same modified couple stress theory when the normality assumption is reinstated. To illustrate the new R-L beam model, the static bending and free vibration problems of a simply supported beam under a concentrated load are analytically solved by directly applying the general formulas derived. The numerical results for the static bending problem reveal that both the deflection and rotation predicted by the current nonclassical R-L model are smaller than those predicted by the classical R-L model. Also, the differences in both the deflection and rotation predicted by the two models are very large when the beam thickness is small, but they diminish with increasing beam thickness. For the free vibration problem, the numerical results show that the natural frequency predicted by the current R-L model is higher than that by the classical R-L model, and the difference is significant only for very thin beams. These predicted trends of the size effect at the micron scale agree with those observed in experiments.


  1. Anthoine, A., Effect of couple-stresses on the elastic bending of beams. DOI: 10.1016/S0020-7683(98)00283-2

  2. Chong, A. C. M., Yang, F., Lam, D. C. C., and Tong, P., Torsion and bending of micron-scaled structures. DOI: 10.1557/JMR.2001.0146

  3. Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. DOI: 10.1063/1.332803

  4. Gao, X.-L., and Mall, S., Variational solution for a cracked mosaic model of woven fabric composites. DOI: 10.1016/S0020-7683(00)00047-0

  5. Gao, X.-L., and Park, S. K., Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. DOI: 10.1016/j.ijsolstr.2007.04.022

  6. Heyliger, P. R., and Reddy, J. N., A higher order beam finite element for bending and vibration problems. DOI: 10.1016/0022-460X(88)90244-1

  7. Koiter, W. T., Couple-stresses in the theory of elasticity: I and II.

  8. Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P., Experiments and theory in strain gradient elasticity. DOI: 10.1016/S0022-5096(03)00053-X

  9. Levinson, M., A new rectangular beam theory. DOI: 10.1016/0022-460X(81)90493-4

  10. Ma, H. M., Gao, X. L., and Reddy, J. N., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. DOI: 10.1016/j.jmps.2008.09.007

  11. Maneschy, C. E., Miyano, Y., Shimbo, M., and Woo, T. C., Residual-stress analysis of an epoxy plate subjected to rapid cooling on both surfaces. DOI: 10.1007/BF02320143

  12. McFarland, A. W. and Colton, J. S., Role of material microstructure in plate stiffness with relevance to microcantilever sensors. DOI: 10.1088/0960-1317/15/5/024

  13. Mindlin, R. D., Influence of couple-stresses on stress concentrations. DOI: 10.1007/BF02327219

  14. Nikolov, S., Han, C.-S., and Raabe, D., On the origin of size effects in small-strain elasticity of solid polymers. DOI: 10.1016/j.ijsolstr.2006.06.039

  15. Papargyri-Beskou, S., Tsepoura, K. G., Polyzos, D., and Beskos, D. E., Bending and stability analysis of gradient elastic beams. DOI: 10.1016/S0020-7683(02)00522-X

  16. Park, S. K. and Gao, X.-L., Bernoulli-Euler beam model based on a modified couple stress theory. DOI: 10.1088/0960-1317/16/11/015

  17. Park, S. K. and Gao, X.-L., Variational formulation of a modified couple stress theory and its application to a simple shear problem. DOI: 10.1007/s00033-006-6073-8

  18. Peddieson, J., Buchanan, G. R., and McNitt, R. P., Application of nonlocal continuum models to nanotechnology. DOI: 10.1016/S0020-7225(02)00210-0

  19. Reddy, J. N., A simple higher-order theory for laminated composite plates. DOI: 10.1115/1.3167719

  20. Reddy, J. N., Energy Principles and Variational Methods in Applied Mechanics.

  21. Reddy, J. N., Nonlocal theories for bending, buckling and vibration of beams. DOI: 10.1016/j.ijengsci.2007.04.004

  22. Reddy, J. N., Wang, C. M., Lim, G. T., and Ng, K. H., Bending solutions of Levinson beams and plates in terms of the classical theories. DOI: 10.1016/S0020-7683(00)00298-5

  23. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity.

  24. Vardoulakis, I. and Sulem, J., Bifurcation Analysis in Geomechanics.

  25. Wang, C. M., Zhang, Y. Y., Ramesh, S. S., and Kitipornchai, S., Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. DOI: 10.1088/0022-3727/39/17/029

  26. Yang, F., Chong, A. C. M., Lam, D. C. C., and Tong, P., Couple stress based strain gradient theory for elasticity. DOI: 10.1016/S0020-7683(02)00152-X

  27. Yang, J. F. C. and Lakes, R. S., Experimental study of micropolar and couple stress elasticity in compact bone in bending. DOI: 10.1016/0021-9290(82)90040-9

Articles with similar content:

International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 1
J. F. Nie, Yuan Gao, Zhuo Zhuang, X. C. You, Z. L. Liu, Zhaohui Zhang
Journal of Porous Media, Vol.16, 2013, issue 3
N. Murulidhara, Ramesh B. Kudenatti, H.P. Patil
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 6
H. Farahmand , S. S. Naseralavi, A. Iranmanesh, M. Mohammadi
Adiabatic Shear Band Localizations in BCC Metals at High Strain Rates and Various Initial Temperatures
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
Farid H. Abed, George Voyiadjis
Deformation and Stability of Copper Nanowires under Bending
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 3
Hongwu Zhang, Shan Jiang, Yonggang Zheng, Zhen Chen