Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i2.90
pages 245-250

The Stability and Mechanical Properties of Boron Nanotubes Explored through Density Functional Calculations

Lijun Pan
Laboratory of Material Physics of the Ministry of Education of China, Zhengzhou University, Zhengzhou, China
Xiaobao Yang
Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
Ruiqin Zhang
Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
Xing Hu
Laboratory of Material Physics of the Ministry of Education of China, Zhengzhou University, Zhengzhou, China

SINOPSIS

Boron nanotubes are attractive because of their novel electronic properties due to the presence of multicenter bonds. Their thermal stability and mechanical properties are important issues in nanodevice applications and thus require intensive study. Using first-principles density functional calculations, we investigated the thermal stability and mechanical properties of armchair single-walled boron nanotubes with diameters ranging from 0.85 to 1.40 nm. We studied the geometry changes of boron nanotubes with temperature variations from 300 to 1200 K. By analyzing shape change, we found that boron nanotubes are stable only below 1000 K. We also extended our study to their mechanical response. Based on the calculated strain energy, we obtained Young's modulus and Poisson's ratio values in the ranges of 380.65-399.44 GPa and 0.184-0.195, respectively. Both the strain and strain energy increased as the temperature increased.

REFERENCIAS

  1. Baughman, R. H., Zakhidow, A. A., and de Heer, W. A., Carbon nanotubes-The route toward applications. DOI: 10.1126/science.1060928

  2. Boustani, I., Rubio, A., and Alonso, J., Ab initio study of B<sub>32</sub> clusters: Competition between, quasiplanar and tubular isomers spherical. DOI: 10.1016/S0009-2614(99)00767-8

  3. Chacko, S., Kanhere, D. G., and Boustani, I., Ab initio density functional investigation of B<sub>24</sub> clusters: Rings, tubes, planes, and cages. DOI: 10.1103/PhysRevB.68.035414

  4. Chopra, N. G. and Zettl, A., Measurement of the elastic modulus of a multi-wall boron nitride nanotube. DOI: 10.1016/S0038-1098(97)10125-9

  5. Ciuparu, D., Klie, R. F., Zhu, Y., and Pfefferle, L., Synthesis of pure boron single-wall nanotubes. DOI: 10.1021/jp049301b

  6. De Crescenzi, M., Castrucci, P., Scarselli, M., Diociaiuti, M., Chaudhari, P. S., Balasubramanian, C., Bhave, T. M., and Bhoraskar, S. V., Experimental imaging of silicon nanotubes. DOI: 10.1063/1.1943497

  7. Hernandez, E., Goze, C., Bernier, P., and Rubio, A., Elastic properties of single-wall nanotubes. DOI: 10.1007/s003390050890

  8. Iijima, S., Helical microtubules of graphitic carbon. DOI: doi:10.1038/354056a0

  9. Kiran, B., Bulusu, S., Zhai, H. J., Yoo, S., Zeng, X. C., and Wang, L. S., Planar-to-tubular structural transition in boron clusters: B<sub>20</sub> as the embryo of single-walled boron nanotubes. DOI: 10.1073/pnas.0408132102

  10. Li, Y., Wang, J., Deng, Z., Wu, Y., Sun, X., Yu, D., and Yang, P., Bismuth nanotubes: A rational low-temperature synthetic route. DOI: 10.1021/ja016435j

  11. Lu, J. P., Elastic properties of carbon nanotubes and nano- pores.

  12. Miyamoto, Y., Rubio, A., Louie, S. G., and Cohen, M. L., Electronic properties of tubule forms of hexagonal BC<sub>3</sub>. DOI: 10.1103/PhysRevB.50.18360

  13. Miyamoto, Y., Cohen, M. L., and Louie, S. G., Theoretical investigation of graphitic carbon nitride and possible tubule forms. DOI: 10.1016/S0038-1098(97)00025-2

  14. Ordejon, P., Artacho, E., and Soler, J. M., Self-consistent order-N density-functional calculations for very large systems. DOI: 10.1103/PhysRevB.53.R10441

  15. Quandt, A. and Boustani, I., Boron nanotubes. DOI: 10.1002/cphc.200500205

  16. Rubio, A., Corkill, J. L., and Cohen, M. L., Theory of graphitic boron nitride nanotubes. DOI: 10.1103/PhysRevB.49.5081

  17. Sanchez-Portal, D., Ordejon, P., Artacho, E., and Soler, J. M., Density-functional method for very large systems with LCAO basis sets. DOI: 10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V

  18. Seifert, G., Kohler, Th., Urbassek, H. M., Hern and ez, E., and Frauenheim. DOI: 10.1103/PhysRevB.63.193409

  19. Singh, A. K., Sadrzadeh, A., and Yakobson, B. I., Probing properties of boron &alpha;-tubes by ab initio calculations. DOI: 10.1021/nl073295o

  20. Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation. DOI: 10.1088/0953-8984/14/11/302

  21. Szwacki, N. G., Sadrzadeh, A., and Yakobson, B. I., B80 Fullerene: An ab initio prediction of geometry,stability, and electronic structure. DOI: 10.1103/PhysRevLett.98.166804

  22. Tibbetts, G. G., Why are carbon filaments tubular?. DOI: 10.1016/0022-0248(84)90163-5

  23. Wong, E. W., Sheehan, P. E., and Lieber, C. M., Nanobeam mechanics, strength, and toughness of nanorods and nanotubes: Elasticity. DOI: 10.1126/science.277.5334.1971

  24. Yakobson, B. I., Brabec, C. J., and Bernholc, J., Nanomechanics of carbon tubes: Instabilities beyond linear response. DOI: 10.1103/PhysRevLett.76.2511

  25. Yang, X. B., Ding, Y., and Ni, J., Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. DOI: 10.1103/PhysRevB.77.041402

  26. Zhai, H. J., Kiran, B., Li, J., and Wang, L. S., Hydrocarbon analogues of boron clusters- Planarity, aromaticity and antiaromaticity. DOI: 10.1038/nmat1012


Articles with similar content:

THERMAL CONDUCTIVITY OF PAAM HYDROGELS AND ITS CROSSLINKING EFFECT
International Heat Transfer Conference 16, Vol.3, 2018, issue
Zhan Peng, Rulei Guo, Ni Tang, Xiaobo Li, Nuo Yang, Jianfeng Zang, Meng An, Xiandong Chen
MOLECULAR DYNAMICS SIMULATION OF CARBON NANOTUBES
Nanoscience and Technology: An International Journal, Vol.4, 2013, issue 1
Sumit Sharma, Navin Kumar, Pramod Kumar, Rakesh Chandra
THERMAL TRANSPORT IN NANOSTRUCTURED ORGANIC-INORGANIC HYBRID MATERIALS
Annual Review of Heat Transfer, Vol.19, 2016, issue 1
Wee-Liat Ong, Jonathan A. Malen
THERMAL CONDUCTANCE MEASUREMENT OF Al-SiC INTERFACE AT 4-300K USING TIME-DOMAIN THERMOREFLECTANCE TECHNIQUE
International Heat Transfer Conference 16, Vol.24, 2018, issue
Kunpeng Yuan, Xinwei Wang, Zhongyin Zhang, Fangyuan Sun, Dawei Tang
STUDY OF THE DEPENDENCE OF THE THERMAL CONDUCTIVITY OF A SINGLE POLYETHYLENE CHAIN ON LENGTH, TEMPERATURE, AND MECHANICAL STRAIN USING MOLECULAR DYNAMICS SIMULATIONS
International Journal of Energy for a Clean Environment, Vol.16, 2015, issue 1-4
Zhichun Liu, Jinguo Yang, Wei Liu, Quanwen Liao