Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i2.70
pages 221-235

Dynamic Crack Propagation Using a Combined Molecular Dynamics/Extended Finite Element Approach

Pascal Aubertin
Universite de Lyon, CNRS INSA-Lyon, LaMCoS UMR 5259, France
Julien Rethore
Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, Netherlands
Rene de Borst
Department of Civil Engineering and Mechanics, University of Glasgow Glasgow, G12 8QQ, Scotland

SINOPSIS

A method is presented for simulating dynamic crack propagation using a coupled molecular dynamics/extended finite element method. Molecular dynamics is used at the crack tip while the extended finite element method naturally models the crack in the wake of the tip as a traction-free discontinuity. After recalling the basic molecular dynamics equations, the discretization of the continuum and the traction-free discontinuity via the extended finite element method, and the zonal coupling method between both domains, two-dimensional computations of dynamic fracture are presented, including a discussion on how to move and/or expand the zone in which molecular dynamics is used upon crack propagation.

REFERENCIAS

  1. Abraham, F. F., Walkup, R., Gao, H., Duchaineau, M., Diaz De La Rubia, T., and Seager, M., Simulating materials failure by using up to one billion atoms and the world's fastest computer: work-hardening. DOI: 10.1073/pnas.062054999

  2. Agrawal, P., Rice, B., and Thompson, D., Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. DOI: 10.1016/S0039-6028(02)01916-7

  3. Aubertin, P., Coupling of atomistic and continuum models: Dynamic crack propagation.

  4. Aubertin, P., Rethore, J., and de Borst, R., Energy conservation of atomistic/continuum coupling. DOI: 10.1002/nme.2542

  5. Basinski, Z. S., Duesberry, M. S., and Taylor, R., Influence of shear stress on screw dislocations in a model sodium lattice.

  6. Belytschko, T. and Black, T., Elastic crack growth in finite elements with minimal remeshing. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

  7. Car, R. and Parrinello, M., Unified approach for molecular dynamics and density-functional theory. DOI: 10.1103/PhysRevLett.55.2471

  8. Cheung, K. S. and Yip, S., Atomic-level stress in an inhomogeneous system. DOI: 10.1063/1.350186

  9. Coker, D., Rosakis, A. J., and Needleman, A., Dynamic crack growth along a polymer composite-homalite interface. DOI: 10.1016/S0022-5096(02)00082-0

  10. de Borst, R., Numerical aspects of cohesive zone models. DOI: 10.1016/S0013-7944(03)00122-X

  11. Fries, T. P., A corrected XFEM approximation without problems in blending elements. DOI: 10.1002/nme.2259

  12. Gracie, R. and Belytschko, T., Concurrently coupled atomistic and XFEM models for dislocations and cracks. DOI: 10.1002/nme.2488

  13. Kolhoff, S., Gumbsch, P., and Frischmeister, H. F.,, Crack propagation in bcc crystals studied with a combined finite element and atomistic model. DOI: 10.1080/01418619108213953

  14. Lutsko, J. F., Stress and elastic constants in anisotropic solids: molecular dynamics techniques. DOI: 10.1063/1.341877

  15. Menouillard, T., Rethore, J., and Combescure, A., Efficient explicit time stepping for the extended finite element method. DOI: 10.1002/nme.1718

  16. Miller, R., Ortiz, M., Phillips, R., Shenoy, V., and Tadmor, E. B., Quasicontinuum models of fracture and plasticity. DOI: 10.1016/S0013-7944(98)00047-2

  17. Moes, N., Dolbow, J., and Belytschko, T., A finite element method for crack growth without remeshing. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

  18. Nose, S., Constant-temperature molecular dynamics. DOI: 10.1088/0953-8984/2/S/013

  19. Parr, R. G., Gadre, S. R., and Bartolotti, L. J., Local density functional theory of atoms and molecules. DOI: 10.1073/pnas.76.6.2522

  20. Remmers, J. J. C., de Borst, R., and Needleman, A., A cohesive segments method for the simulation of crack growth. DOI: 10.1007/s00466-002-0394-z

  21. Remmers, J. J. C., de Borst, R., and Needleman, A., The simulation of dynamic crack propagation using the cohesive segments method. DOI: 10.1016/j.jmps.2007.08.003

  22. Rethore, J., Gravouil, A., and Combescure, A., An energy conserving scheme for dynamic crack growth with the extended finite element method. DOI: 10.1002/nme.1283

  23. Rethore, J., de Borst, R., and Abellan, M. A., A two-scale approach for fluid flow in fractured porous media. DOI: 10.1002/nme.1962

  24. Rethore, J., de Borst, R., and Abellan, M. A., A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. DOI: 10.1007/s00466-007-0178-6

  25. Shilkrot, L. E., Miller, R. E., and Curtin, W. A., Coupled atomistic and discrete dislocation plasticity. DOI: 10.1103/PhysRevLett.89.025501

  26. Wells, G. N. and Sluys, L. J., Discontinuous analysis of softening solids under impact loading. DOI: 10.1002/nag.148

  27. Wells, G. N., de Borst, R., and Sluys, L. J., A consistent geometrically non-linear approach for delamination. DOI: 10.1002/nme.462

  28. Xu, X. P. and Needleman, A., Numerical simulations of fast crack growth in brittle solids. DOI: 10.1016/0022-5096(94)90003-5

  29. Zhou, M., A new look at the atomic level virial stress: On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127

  30. Zhou, S. J., Lomdahl, P. S., Voter, A. F., and Holian, B. L., Three-dimensional fracture via large-scale molecular dynamics. DOI: 10.1016/S0013-7944(98)00053-8


Articles with similar content:

COUPLED COHESIVE ZONE REPRESENTATIONS FROM 3D QUASICONTINUUM SIMULATION ON BRITTLE GRAIN BOUNDARIES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Carsten Konke, Torsten Luther
AN XFEM BASED MULTISCALE APPROACH TO FRACTURE OF HETEROGENEOUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 6
Mirmohammadreza Kabiri, Franck J. Vernerey
A FULLY COUPLED COMPUTATIONAL FRAMEWORK FOR FLUID PRESSURIZED CRACK EVOLUTION IN POROUS MEDIA
Journal of Porous Media, Vol.22, 2019, issue 8
Mohammad Rezania, Walid Tizani, Mohaddeseh Mousavi Nezhad, P. G. Ranjith, Alex Hardcastle
Eigendeformation-Based Homogenization of Concrete
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Zheng Yuan, Jacob Fish, Wei Wu
Multiscale Simulations of Triblock Copolymers
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
James Snyder, Peter W. Chung, Jan Andzelm, Frederick L. Beyer