Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002554
pages 101-108


Asad Hasan
Carnegie Mellon University
Craig Maloney


We study the process of dislocation nucleation in aperfect 2D hexagonal crystal under nano-indentation loading in anumerical model using energy minimization techniques and analysisof the energy eigenmodes. The nucleation event takes the form ofa saddle-node catastrophe and is governed by associated scalinglaws In particular, on approach to nucleation, a single energyeigenmode descends through the spectrum and its eigenvaluevanishes as the square root of the distance to the nucleationpoint. The velocity of the system shows the same scalingbehavior, and its normal-mode decomposition demonstrates that itis dominated by the critical mode responsible for nucleation.


  1. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids.

  2. Christopher, D., Smith, R., and Richter, A., Atomistic modelling of nanoindentation in iron and silver. DOI: 10.1088/0957-4484/12/3/328

  3. de la Fuente, O. R., Zimmerman, J. A., Gonzalez, M. A., de la Figuera, J., Hamilton, J. C., Pai, W. W., and Rojo, J. M., Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations.

  4. Delph, T. J. and Zimmerman, J. A., Prediction of instabilities at the atomic scale. DOI: 10.1088/0965-0393/18/4/045008

  5. Delph, T. J., Zimmerman, J. A., Rickman, J. M., and Kunz, J. M., A local instability criterion for solid-state defects. DOI: 10.1016/j.jmps.2008.10.005

  6. Farkas, D., Duranduru, M., Curtin, W. A., and Ribbens, C., Multiple-dislocation emission from the crack tip in the ductile fracture of al. DOI: 10.1080/01418610110033984

  7. Gerberich, W. W., Tymiak, N. I., Grunlan, J. C., Horstemeyer, M. F., and Baskes, M. I., Interpretations of indentation size effects. DOI: 10.1115/1.1469004

  8. Gumbsch, P. and Beltz, G. E., On the continuum versus atomistic descriptions of dislocation nucleation and cleavage in nickel. DOI: 10.1088/0965-0393/3/5/002

  9. Guo, Y. F., Wang, C. Y., and Zhao, D. L., Atomistic simulation of crack cleavage and blunting in bcc-fe. DOI: 10.1016/S0921-5093(02)00287-3

  10. Hai, S. and Tadmor, E. B., Deformation twinning at aluminum crack tips. DOI: 10.1016/S1359-6454(02)00367-1

  11. Hora, P., Pelikan, V., Machova, A., Spielmannova, A., Prahl, J., Landa, M., and Cervena, O., Crack induced slip processes in 3d. DOI: 10.1016/j.engfracmech.2007.05.013

  12. Jin, J., Shevlin, S. A., and Guo, Z. X., Multiscale simulation of onset plasticity during nanoindentation of al (001) surface. DOI: 10.1016/j.actamat.2008.04.064

  13. Knap, J. and Ortiz, M., Effect of indenter-radius size on au(001) nanoindentation. DOI: 10.1103/PhysRevLett.90.226102

  14. Kucherov, L. and Tadmor, E. B., Twin nucleation mechanisms at a crack tip in an hcp material: Molecular simulation. DOI: 10.1016/j.actamat.2006.10.056

  15. Landman, U., Luedtke, W. D., Burnham, N. A., and Colton, R. J., Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. DOI: 10.1126/science.248.4954.454

  16. Li, J., The mechanics and physics of defect nucleation. DOI: 10.1557/mrs2007.48

  17. Li, J., Van Vliet, K. J., Zhu, T., Yip, S., and Suresh, S., Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. DOI: 10.1038/nature00865

  18. Li, J., Zhu, T., Yip, S., Van Vliet, K. J., and Suresh, S., Elastic criterion for dislocation nucleation. DOI: 10.1016/j.msea.2003.09.003

  19. Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M., and Nix, W. D., Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. DOI: 10.1016/S0022-5096(02)00119-9

  20. Maloney, C. and Lemaitre, A., Universal breakdown of elasticity at the onset of material failure. DOI: 10.1103/PhysRevLett.93.195501

  21. Maloney, C. E. and Lacks, D. J., Energy barrier scalings in driven systems. DOI: 10.1103/PhysRevE.73.061106

  22. Maloney, C. E. and Lemaitre, A., Amorphous systems in athermal, quasistatic shear. DOI: 10.1103/PhysRevE.74.016118

  23. Miller, R. E. and Acharya, A., A stress-gradient based criterion for dislocation nucleation in crystals. DOI: 10.1016/j.jmps.2004.01.007

  24. Miller, R. E. and Rodney, D., On the nonlocal nature of dislocation nucleation during nanoindentation. DOI: 10.1016/j.jmps.2007.10.005

  25. Miller, R. E., Shilkrot, L. E., and Curtin, W. A., A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films. DOI: 10.1016/j.actamat.2003.09.011

  26. Nocedal, J. and Wright, S., Numerical Optimization.

  27. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. DOI: 10.1006/jcph.1995.1039

  28. Rice, J. R., Dislocation nucleation from a crack tip–an analysis based on the peierls concept. DOI: 10.1016/S0022-5096(05)80012-2

  29. Rice, J. R. and Beltz, G. E., The activation-energy for dislocation nucleation at a crack. DOI: 10.1016/0022-5096(94)90013-2

  30. Shenoy, V. B., Phillips, R., and Tadmor, E. B., Nucleation of dislocations beneath a plane strain indenter. DOI: 10.1016/S0022-5096(99)00055-1

  31. Sun, Y. M., Beltz, G. E., and Rice, J. R., Estimates from atomic models of tension shear coupling in dislocation nucleation from a crack-tip. DOI: 10.1016/0921-5093(93)90370-T

  32. Tadmor, E. B., Miller, R., Phillips, R., and Ortiz, M., Nanoindentation and incipient plasticity. DOI: 10.1557/JMR.1999.0300

  33. Tanguy, D., Razafindrazaka, M., and Delafosse, D., Multiscale simulation of crack tip shielding by a dislocation. DOI: 10.1016/j.actamat.2008.01.031

  34. Van Vliet, K. J., Li, J., Zhu, T., Yip, S., and Suresh, S., Quantifying the early stages of plasticity through nanoscale experiments and simulations. DOI: 10.1103/PhysRevB.67.104105

  35. Warner, D. H. and Curtin, W. A., Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals. DOI: 10.1016/j.actamat.2009.05.024

  36. Warner, D. H., Curtin, W. A., and Qu, S., Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. DOI: 10.1038/nmat2030

  37. Xie, H. X., Wang, C. Y., and Yu, T., Atomistic simulation of fracture in Ni3Al. DOI: 10.1557/JMR.2008.0192

  38. Zhu, T., Li, J., and Yip, S., Atomistic study of dislocation loop emission from a crack tip. DOI: 10.1103/PhysRevLett.93.025503

  39. Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C., and Foiles, S. M., Surface step effects on nanoindentation. DOI: 10.1103/PhysRevLett.87.165507