Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013005821
pages 289-307

UNCERTAINTY QUANTIFICATION IN DAMAGE MODELING OF HETEROGENEOUS MATERIALS

Michael J. Bogdanor
Civil and Environmental Engineering Department, Vanderbilt University, Nashville, Tennessee 37235, USA
Sankaran Mahadevan
Civil and Environmental Engineering Department, Vanderbilt University, Nashville, Tennessee 37235, USA
Caglar Oskay
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA

SINOPSIS

This manuscript investigates the use of Bayesian statistical methods for calibration and uncertainty quantification in rate-dependent damage modeling of composite materials. The epistemic and aleatory uncertainties inherent in the model prediction due to model parameter uncertainty, model form error, solution approximations, and measurement errors are investigated. Gaussian process surrogate models are developed to replace expensive finite element models in the analysis. A viscous damage model is employed with a solution algorithm designed for implementation within a commercial finite element software package (Abaqus). Experimental results from a suite of monotonic load tests conducted on unidirectional glass fiber reinforced epoxy composite samples at multiple strain rates and strain orientations are used to quantify the uncertainty in the prediction of the composite response within a Bayesian framework.

REFERENCIAS

  1. Aboudi, J., The effect of evolving damage on the finite strain response of inelastic and viscoelastic composites. DOI: 10.3390/ma2041858

  2. Abu Al-Rub, R. K. and Voyiadjis, G. Z., A finite strain plastic-damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I—Theoretical formulation. DOI: 10.1177/1056789506058046

  3. Aronhime, J., Harel, H., Gilbert, A., and Marom, G., The rate-dependence of flexural shear fatigue and uniaxial compression of carbon- and aramid-fibre composites and hybrids. DOI: 10.1016/0266-3538(92)90001-J

  4. Chen, H. S., Hwang, S. F., and Chen, H. S., Accelerated fatigue properties of unidirectional carbon/epoxy composite materials. DOI: 10.1002/pc.20181

  5. Crouch, R. and Oskay, C., Symmetric meso-mechanical model for failure analysis of heterogeneous materials. DOI: 10.1615/IntJMultCompEng.v8.i5.20

  6. Emery, T. R., Dulieu-Barton, J. M., Earl, J. S., and Cunningham, P. R., A generalized approach to the calibration of orthotropic materials for thermoelastic stress analysis. DOI: 10.1016/j.compscitech.2007.09.002

  7. Geman, D. and Geman, S., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. DOI: 10.1109/TPAMI.1984.4767596

  8. Guedes, J. M. and Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element models. DOI: 10.1016/0045-7825(90)90148-F

  9. Hastings, W. K., Monte Carlo sampling methods using Markov chains and their applications. DOI: 10.1093/biomet/57.1.97

  10. Hombal, V. and Mahadevan, S., Bias minimization in Gaussian process surrogate modeling for uncertainty quantification. DOI: 10.1615/Int.J.UncertaintyQuantification.2011003343

  11. Huang, X., Gillespie, J. W., Eduljee, R. F., and Shen, Z., Matrix cracking behavior of K3B/IM7 composite laminates subject to static and fatigue loading. DOI: 10.1016/S0263-8223(00)00078-7

  12. Jeffrys, H., An invariant form for the prior probability in estimation problems. DOI: 10.1098/rspa.1946.0056

  13. Kennedy, M. C. and O´Hagan, A., Bayesian calibration of computer models. DOI: 10.1111/1467-9868.00294

  14. Lemaitre, J. and Chaboche, J. L., Mechanics of Solid Materials.

  15. Liang, B. and Mahadevan, S., Error and uncertainty quantification and sensitivity analysis of mechanics computational models. DOI: 10.1615/IntJUncertaintyQuantification.v1.i2.30

  16. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., Equation of state calculations by fast computing machines. DOI: 10.1063/1.1699114

  17. Neal, R. M., Slice sampling. DOI: 10.1214/aos/1056562461

  18. Oskay, C. and Fish, J., On calibration and validation of Eigendeformation-based multiscale models for failure analysis of heterogeneous systems. DOI: 10.1007/s00466-007-0197-3

  19. Philippidis, T. P. and Assimakopoulou, T. T., Strength degredation due to fatigue-induced matrix cracking in FRP composites: An acoustic emission predictive model. DOI: 10.1016/j.compscitech.2008.08.020

  20. Raghavan, J. and Meshii, M., Time-dependent damage in carbon fibre-reinforced polymer composites. DOI: 10.1016/1359-835X(96)00073-5

  21. Rasmussen, C. and Williams, C., Gaussian Processes for Machine Learning.

  22. Reilly, P. M. and Patino-Leal, H., A Bayesian study of the error-in-variables model. DOI: 10.1080/00401706.1981.10486290

  23. Sankararaman, S., Uncertainty Quantification and Integration in Engineering Systems.

  24. Sankararaman, S., Ling, Y., and Mahadevan, S., Model validation and uncertainty quantification of fatigue crack growth analysis. DOI: 10.1016/j.engfracmech.2011.02.017

  25. Simo, J. C. and Ju, J. W., Strain- and stress-based continuum damage models—II. Computational aspects. DOI: 10.1016/0020-7683(87)90084-9

  26. Terada, K. and Kikuchi, N., Nonlinear homogenization method for practical applications.

  27. Thiruppukuzhi, S. V. and Sun, C. T., Models for the strain-rate-dependent behavior of polymer composites. DOI: 10.1016/S0266-3538(00)00133-0

  28. Zhang, R. and Mahadevan, S., Model uncertainty and Bayesian updating in reliabilitybased inspection. DOI: 10.1016/S0167-4730(00)00005-9