Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i3.30
pages 319-335

Effect of the Knudsen Number on Transient Times During Chemical Vapor Deposition

Matthias K. Gobbert
Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
Timothy S. Cale
Focus Center − New York, Rensselaer: Interconnections for Hyperintegration, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, СП 6015,110 8th Street, Troy, NY 12180-3590, USA

SINOPSIS

Models for the individual steps used to fabricate integrated circuits (ICs) are of interest in order to improve fabrication efficiency and process designs. Here we focus on deposition from the gas stream in which the dominant species is an inert carrier gas, as it flows across a wafer on which ICs are being fabricated. We model the transport of gaseous species to the surface and heterogeneous (surface) chemical reactions for chemical vapor deposition using a kinetic transport and reaction model (KTRM), which is represented by a system of linear Boltzmann equations. The model is valid for a range of pressures and for length scales from nanometers to decimeters, making it suitable for multiscale models. We present transient simulation results for transport of reactants into an inherently three-dimensional prototypical micron scale trench via structure for a wide range of Knudsen numbers. The results highlight the capabilities of the KTRM and its implementation, and demonstrate that the transients last longer for lower Knudsen numbers than for higher Knudsen numbers. We briefly discuss how the KTRM might be used in a multiscale computational model.


Articles with similar content:

INFLUENCE OF AIR-DRAFT ON FABRICATION OF POLYURETHANE THIN FILMS VIA ULTRASONIC ATOMIZATION
Atomization and Sprays, Vol.22, 2012, issue 1
Mrinal C. Saha, Anandh Balakrishnan
Permeability of Musculoskeletal Tissues and Scaffolding Materials: Experimental Results and Theoretical Predictions
Critical Reviews™ in Biomedical Engineering, Vol.31, 2003, issue 1&2
Eric A. Nauman, Edward A. Sander
THINKING BEYOND THE PHONON GAS MODEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Asegun Henry
THERMAL TRANSPORT IN NANOSTRUCTURED ORGANIC-INORGANIC HYBRID MATERIALS
Annual Review of Heat Transfer, Vol.19, 2016, issue 1
Wee-Liat Ong, Jonathan A. Malen
REACTIVE FORCE FIELDS: CONCEPTS OF REAXFF AND APPLICATIONS TO HIGH-ENERGY MATERIALS
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 2
Yun-Kyung Shin, Osvalds Verners, Adri van Duin