Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

IDENTIFICATION AND PROBABILISTIC MODELING OF MESOCRACK INITIATIONS IN 304L STAINLESS STEEL

Volumen 9, Edición 4, 2011, pp. 445-458
DOI: 10.1615/IntJMultCompEng.v9.i4.70
Get accessGet access

SINOPSIS

A probabilistic model is proposed to simulate the growth of fatigue damage in an austenitic stainless steel at a mesoscopic scale. Several fatigue mechanical tests were performed to detect and quantify mesocrack initiations for different loadings by using digital image correlation. The number of initiated mesocracks is experimentally determined. The process is then described by a Poisson point process. The intensity of the process is evaluated by using a multiscale approach based on a probabilistic crack initiation law in a typical grain.

REFERENCIAS
  1. Argence, D., Endommagements Couplés de Fatigue et de Fluage Sous Chargement Multiaxial.

  2. Bartali, A., Aubin, V., and Degallaix, S., Fatigue damage analysis in a duplex stainless steel. DOI: 10.1111/j.1460-2695.2007.01207.x

  3. Bataille, A. and Magnin, T., Surface damage accumulation in low-cycle fatigue - physical analysis and numerical modeling. DOI: 10.1016/0956-7151(94)90447-2

  4. Besnard, G., Hild, F., and Roux, S., Finite element diplacement fields analysis from digital images: Application to portevin-le chatelier bands. DOI: 10.1007/s11340-006-9824-8

  5. Chauvot, C. and Sester, M., Fatigue crack initiation and crystallographic crack growth in an austenitic stainless steel. DOI: 10.1016/S0927-0256(00)00143-9

  6. Colin, J., Fatemi, A., and Taheri, S., Fatigue behavior of stainless steel 304l including strain hardening, prestraining, and mean stress effects. DOI: 10.1115/1.4000224

  7. Denoual, C., Barbier, G., and Hild, F., A probabilistic approach for fragmentation of brittle materials under dynamic loading. DOI: 10.1016/S1251-8069(97)82333-0

  8. Déprés, C., Modélisation physique des stades précurseurs de l’endommagement en fatigue dans l’acier inoxydable austénitique 316L.

  9. Déprés, C., Robertson, C., and Fivel, M., Low-strain fatigue in 316l steel surface grains: A three dimension discrete dislocation dynamics modelling of the early cycles, Part 2: Persistent slip markings and micro-crack nucleation. DOI: 10.1080/14786430500341250

  10. Desmorat, R., Kane, A., Seyedi, M., and Sermage, J., Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue. DOI: 10.1016/j.euromechsol.2007.01.002

  11. Doudard, C., Calloch, S., Cugy, P., and Hild, F., A probabilistic two-scale model for high-cycle fatigue life predictions. DOI: 10.1111/j.1460-2695.2005.00854.x

  12. Ewing, J. A. and Humfrey, J. C., The fracture of metals under repeated alternations of stress. DOI: 10.1098/rsta.1903.0006

  13. Fedelich, B., A stochastic theory for the problem of multiple surface crack coalescence. DOI: 10.1023/A:1007431802050

  14. Forsyth, P., A two stage process of fatigue crack growth.

  15. Hamam, R., Hild, F., and Roux, S., Stress intensity factor gauging by digital image correlation: Application in cyclic fatigue. DOI: 10.1111/j.1475-1305.2007.00345.x

  16. Hoshide, T. and Socie, D., Crack nucleation and growth modeling in biaxial fatigue. DOI: 10.1016/0013-7944(88)90018-5

  17. Hua, C. and Socie, D., fatigue damage in 1045 steel under constant amplitude biaxial loading. DOI: 10.1111/j.1460-2695.1984.tb00187.x

  18. Le Pecheur, A., Compréhension des Mécanismes et Prévision de l’amor Cage en Fatigue Thermique des Aciers Austénitiques, Prenant en Compte l’état de Surface et le Caractére Multi-Axial du Chargement.

  19. Li, Y., Contribution à l’étude de l’endommagement par Fatigue à L’aide d’un Modéle Polycristallin.

  20. Lindborg, U., A statistical model for the linking of microcracks. DOI: 10.1016/0001-6160(69)90033-9

  21. Ma, B. and Laird, C., Overview of fatigue behavior in copper single crystals, parts 1–5.

  22. Magnin, T., Coudreuse, L., and Lardon, J., A quantitative approach to fatigue damage evolution in fcc and bcc stainless-steels.

  23. Maillot, V., Amor Cage et Propagation de Reseaux de Fissures de Fatigue Thermique Dans un Acier Inoxydable Austénitique de Type X2 CrNi 18-09 (AISI 304L).

  24. Malésys, N., Modélisation Probabiliste de la Formation de Réseaux de Fissures en Fatigue Thermique.

  25. Malésys, N., Vincent, L., and Hild, F., A probabilistic model to predict the formation and propagation of crack networks in thermal fatigue. DOI: 10.1016/j.ijfatigue.2008.03.026

  26. Man, J., Obrtlik, K., Blochwitz, C., and Polak, J., Atomic force microscopy of surface relief in individual grains of fatigued 316l austenitic stainless steel. DOI: 10.1016/S1359-6454(02)00167-2

  27. Miller, K., The thresholds for crack propagation.

  28. Mughrabi, H., Ackermann, F., and Kerz, H., Persistent slip bands in fatigued face-centered and body-centered cubic metals.

  29. Mughrabi, H., Wang, R., Differt, K., and Essman, U., Fatigue crack initiation by cyclic slip irreversibilities in high-cycle fatigue.

  30. Mura, T., A theory of fatigue crack initiation.

  31. Osterstock, S., Vers la Prediction de l’apparition de Reseaux de Fissures en Fatigue Thermique: Influence des Parametres Microstructuraux sur la Dispersion `a l’amor Cage.

  32. Osterstock, S., Robertson, C., Sauzay, M., Degallaix, S., and Aubin, V., Prediction of the scatter of crack initiation under high cycle fatigue. DOI: 10.4028/www.scientific.net/KEM.345-346.363

  33. Paris, P. and Erdogan, F., A critical analysis of crack propagation laws.

  34. Polak, J. and Zezulka, P., Short crack growth and fatigue life in austenitic-ferritic duplex stainless steel. DOI: 10.1111/j.1460-2695.2005.00936.x

  35. Poncelet, M., Barbier, G., Raka, B., Courtin, S., Desmorat, R., Le-Roux, J., and Vincent, L., Biaxial high cycle fatigue of a type 304l stainless steel: Cyclic strains and crack initiation detection by digital image correlation. DOI: 10.1016/j.euromechsol.2010.05.002

  36. Sauzay, M., Evrard, P., Steckmeyer, A., and Ferri´e, E., Physically-based modeling of the cyclic macroscopic behaviour of metals. DOI: 10.1016/j.proeng.2010.03.057

  37. Suh, C., Lee, J., Kang, Y., Ahn, H., and Woo, B., A simulation of the fatigue crack process in type-304 stailess steel at 538-degreesc.

  38. Sutton, M. A., Helm, J. D., and Boone, M. L., Experimental study of crack growth in thin sheet 2024-t3. DOI: 10.1023/A:1011014917851

  39. Vasek, A. and Polak, J., Low-cycle fatigue damage accumulation in armco-iron. DOI: 10.1111/j.1460-2695.1991.tb00653.x

  40. Weiss, J., Endommagement en Viscoplasticité Cyclique Sous Chargement Multiaxial à Haute Température d’un Acier Inoxydable Austénitique.

  41. Weiss, J. and Pineau, A., Fatigue and creep-fatigue damage of austenitic stainless-steels under multiaxial loading. DOI: 10.1007/BF02648599

  42. Zhai, T.,Wilkinson, A. J., and Martin, J.W., A crystallographic mechanism for fatigue crack propagation through grain boundaries. DOI: 10.1016/S1359-6454(00)00214-7

CITADO POR
  1. Mathieu Florent, Hild François, Roux Stéphane, Identification of a crack propagation law by digital image correlation, International Journal of Fatigue, 36, 1, 2012. Crossref

  2. Nierenberger M., Poncelet M., Pattofatto S., Hamouche A., Raka B., Virely J.M., Multiaxial Testing of Materials Using a Stewart Platform: Case Study of the Nooru-Mohamed Test, Experimental Techniques, 38, 2, 2014. Crossref

  3. Barés Jonathan, Gélébart Lionel, Rupil Jérémie, Vincent Ludovic, A joined finite element based method to simulate 3D crack network initiation and propagation in mechanical and thermal fatigue, International Journal of Fatigue, 44, 2012. Crossref

  4. Augustins L., Hild F., Billardon R., Boudevin S., Experimental and numerical analysis of thermal striping in automotive brake discs, Fatigue & Fracture of Engineering Materials & Structures, 40, 2, 2017. Crossref

  5. Tomičević Zvonimir, Roux Stéphane, Hild François, Evaluation of fatigue crack network growth in cast iron for different biaxial loading paths via full-field measurements, International Journal of Fatigue, 92, 2016. Crossref

  6. Tomičevć Zvonimir, Hild François, Roux Stéphane, Mechanics-aided digital image correlation, The Journal of Strain Analysis for Engineering Design, 48, 5, 2013. Crossref

  7. Rupil J, Roux S, Hild F, Vincent L, Fatigue microcrack detection with digital image correlation, The Journal of Strain Analysis for Engineering Design, 46, 6, 2011. Crossref

  8. Chemisky Yves, Hartl Darren J., Meraghni Fodil, Three-dimensional constitutive model for structural and functional fatigue of shape memory alloy actuators, International Journal of Fatigue, 112, 2018. Crossref

  9. Rokoš O., Hoefnagels J.P.M., Peerlings R.H.J., Geers M.G.D., On micromechanical parameter identification with integrated DIC and the role of accuracy in kinematic boundary conditions, International Journal of Solids and Structures, 146, 2018. Crossref

  10. Phillips Francis R., Wheeler Robert W., Geltmacher Andrew B., Lagoudas Dimitris C., Evolution of internal damage during actuation fatigue in shape memory alloys, International Journal of Fatigue, 124, 2019. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain