Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2015013345
pages 249-263

AN IMPROVED HOMOGENIZATION OF INELASTIC COMPOSITES

Marta Oleksy
Department of Civil Engineering, Institute for Computational Civil Engineering, Cracow University of Technology, 31-155 Krakow, Poland

SINOPSIS

Inelastic modeling of composite materials is typically a very time-consuming task, even when the microscale material properties are taken into account in a simplified way, e.g., by a homogenization technique. In this paper a twofold improvement in computational homogenization that leads to more efficient and reliable analysis of elasticplastic metal matrix composites is presented. First, possibility of determination of the overall inelastic material properties on the basis of only one representative volume element (RVE) is verified. Second, an a posteriori homogenization error estimate is adopted for elasticplastic problems in order to control modeling accuracy and determine whether a single RVE analysis is in particular case a reasonable trade-off between accuracy and efficiency. Selected numerical experiments validate the proposed modifications.


Articles with similar content:

IDENTIFICATION OF OPTIMAL REDUCED ORDER HOMOGENIZATION MODELS FOR FAILURE OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Caglar Oskay, Paul Sparks
A NEW GIBBS SAMPLING BASED BAYESIAN MODEL UPDATING APPROACH USING MODAL DATA FROM MULTIPLE SETUPS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 4
Sahil Bansal
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt
Anisotropic Micromechanical Creep Damage Model for Composite Materials: A Reduced-Order Approach
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 2
Erez Gal, Jacob Fish
Adiabatic Shear Band Localizations in BCC Metals at High Strain Rates and Various Initial Temperatures
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
Farid H. Abed, George Voyiadjis