Suscripción a Biblioteca: Guest
Plasma Medicine

Publicado 4 números por año

ISSN Imprimir: 1947-5764

ISSN En Línea: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Radiofrequency Fields Preferentially Enhance In Vitro Cellular Radiosensitivity to Large Fractional Doses in a p53-Dependent Manner

Volumen 9, Edición 2, 2019, pp. 147-166
DOI: 10.1615/PlasmaMed.2020032818
Get accessDownload

SINOPSIS

Hypofractionated radiotherapy, which employs large fractions of ionizing radiation, is an effective treatment modality for most superficial cancers, but may result in severe side effects from normal tissue toxicity. It is, therefore, desirable to identify radiation modifying agents that potentiate the tumor inactivating effects of ionizing radiation and thereby lead to a reduction in radiation dose and prevent normal tissue toxicity. This study assessed the effect of radiofrequency fields (RFF), modulated at 100 and 1000 Hz, on the radiosensitivity of four human cell lines: MeWo (melanoma; p53 mutant), Be11 (melanoma; p53 wild-type), DU145 (prostate cancer; p53 mutant), and L132 (normal lung fibroblasts; p53 wild-type), using the colony assay. The magnetic flux densities that were induced in cell cultures ranged from 6.74 to 22.43 μT. The data demonstrate that RFF are more efficient in modulating large fractional doses of X-rays in a frequency- and cell-type-dependent manner. Their effects on radiosensitivity also appear to be linked to p53 status, with cells with mutant p53 being less sensitized than those that are p53 wild-type. These findings suggest that RFF could find application in hypofractionated radiotherapy as adjuvants, and can have a positive impact on the treatment of superficial tumors, and specifically tumors that are p53 wild-type.

REFERENCIAS
  1. Liauw SL, Connell PP, Weichselbaum RR. New paradigms and future challenges in radiation oncology: An update of biological targets and technology. Sci Transl Med. 2013;5:173sr2.

  2. Guadagnolo BA, Liao K-P, Elting L, Giordano S, Buchholz TA, Shih Y-CT. Use of radiation therapy in the last 30 days of life among population-based cohort of elderly patients in the United States. J Clin Oncol. 2013;31:80-7.

  3. Perez CA, Mutic S. Advances and future of radiation oncology. Rep Pract Oncol Radiother. 2013;18:329-32.

  4. Hur W, Yoon S. Molecular pathogenesis of radiation-induced cell toxicity in stem cells. Int J Mol Sci. 2017;18:2749.

  5. Hegemann N-S, Guckenberger M, Belka C, Ganswindt U, Manapov F, Li M. Hypofractionated radio-therapy for prostate cancer. Radiat Oncol. 2014;9:275.

  6. Simko M, Kriehuber R, Weiss DG, Luben RA. Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics. 1998;19:85-91.

  7. Tofani S, Barone D, Cintorino M, de Santi MM, Ferrara A, Orlassino R, Ossola P, Peroglio F, Rolfo K, Ronchetto F. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics. 2001;22:419-28.

  8. Czyz J, Guan K, Zeng Q, Nikolova T, Meiser A, Schonborn F, Schuderer J, Kuster N, Wobus AM. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppres.

  9. Sarimov R, Markova E, Johansson F, Jenssen D, Belyaev I. Exposure to ELF magnetic field tuned to Zn inhibits growth of cancer cells. Bioelectromagnetics. 2005;26:631-8.

  10. Crocetti S, Beyer C, Schade G, Egli M, Frohlich J, Franco-Obregon A. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS One. 2013;8:e72944.

  11. Tofani S. Electromagnetic energy as a bridge between atomic and cellular levels in the genetics approach to cancer treatment. Curr Top Med Chem. 2015;15:572-578.

  12. Lucia U, Ponzetto A, Deisboeck T. Investigating the impact of electromagnetic fields on human cells: A thermodynamic perspective. Physica A. 2016;443:42-48.

  13. Restrepo AF, Tobar VE, Camargo RJ, Franco E, Pinedo CR, Gutierrez O. Effects of extremely low frequency electromagnetic fields on in-vitro cellular cultures HeLa and CHO. In: Conference Proceedings of IEEE Engineering in Medicine and Biology Society, 2016; 2016. p. 4193-6.

  14. Solek P, Majchrowicz L, Bloniarz D, Krotoszynska E, Koziorowski M. Pulsed or continuous electro-magnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology. 2017;382:84-92.

  15. Kirson ED, Dbaly V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, Mordechovich D, Steinberg-Shapira S, Gurvich Z, Schneiderman R, Wasserman Y, Salzberg M, Ryffel B, Goldsher D, Dekel E, Palti Y. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci U S A. 2007;104:10152-7.

  16. Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, Pasche B. Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res. 2009;28:51.

  17. Verginadis I, Velalopoulou A, Karagounis I, Simos Y, Peschos D, Karkabounas S, Evangelou A. Beneficial effects of electromagnetic radiation in cancer. In: Bashir SO, editor. Electromagnetic radiation. Shanghai: InTech; 2012. p. 249-68.

  18. Vadala M, Morales-Medina JC, Vallelunga A, Palmieri B, Laurino C, Iannitti T. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology. Cancer Med. 2016;5:3128-39.

  19. Miyakoshi J, Koji Y, Wakasa T, Takebe H. Long-term exposure to a magnetic field (5 mT at 60 Hz) increases X-ray-induced mutations. J Radiat Res. 1999;40:13-21.

  20. Ding G-R, Yaguchi H, Yoshida M, Miyakoshi J. Increase in X-ray-induced mutations by exposure to magnetic field (60 Hz, 5 mT) in NF-KB-inhibited cells. Biochem Biophys Res Commun. 2000;276:238-43.

  21. Artacho-Cordon F, Salinas-Asensio MM, Calvente I, Rfos-Arrabal S, Leon J, Roman-Marinetto E, Olea N, Nunez MI. Could radiotherapy effectiveness be enhanced by electromagnetic field treatment? Int J Mol Sci. 2013;14:14974-95.

  22. Chinhengo A, Serafin A, Hamman B, Akudugu J. Electromagnetic fields induce frequency-dependent radioprotection and radiosensitization in in vitro cell cultures. Plasma Med. 2018;8:163-75.

  23. Chinhengo A, Serafin A, Akudugu J. Comparison of cellular sensitivity to a split radiation dose and a combination of a single radiation dose and electromagnetic field exposure. Plasma Med. 2019;9:15-22.

  24. Takahashi A. Pre-irradiation at a low dose-rate blunted p53 response. J Radiat Res. 2002;43:1-9.

  25. Barlow ML, Battaglia N, Gerber SA, Lord EM. Hypofractionated radiotherapy treatment preserves immune function and improves tumor control vs. hyperfractionated treatment. J Immunol. 2016;196:213.13.

  26. Weininger J, Guichard M, Joly AM, Malaise EP, Lachet B. Radiosensitivity and growth parameters in vitro of three human melanoma cell strains. Int J Radiat Biol. 1978;34:285-90.

  27. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU145). Int J Cancer. 1978;21:274-81.

  28. Rife R, inventor; A microscope lamp. United States patent US 1727618. 1929 Sep 10.

  29. Sylver N. The Rife handbook of frequency therapy with a holistic health premier. Phoenix, Arizona: Desert Gate Productions LLC; 2009.

  30. Zimmerman JW, Jimenez H, Pennison MJ, Brezovich I, Morgan D, Mudry A, Costa FP, Barbault A, Pasche B. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies. Chin J Cancer. 2013;32:573-81.

  31. American Cancer Society. Questionable methods of cancer management: Electronic devices. CA Cancer J Clin. 1994;44:115-27.

  32. Bassen H, Litovitz T, Penafiel M, Meister R. ELF in vitro exposure systems for inducing uniform electric and magnetic fields in cell culture media. Bioelectromagnetics. 1992;13:183-98.

  33. Slabbert JP, Theron T, Serafin A, Jones DTL, Bohm L, Schmitt G. Radiosensitivity variations in human tumor cell lines exposed in vitro to p(66)/Be neutrons or 60Co-rays. Strahlenther Onkol. 1996;172:567-72.

  34. Maleka S, Serafin A, Hamunyela R, Hamid M, Achel D, Akudugu J. NVP-BEZ235 enhances radio-sensitivity of human prostate cancer cells but acts as a radioprotector to normal prostate cells. J Cancer Biol Therap. 2015;1:38-45.

  35. Roos WP, Binder A, Bohm L. Determination of the initial DNA damage and residual DNA damage remaining after 12 hours of repair in eleven cell lines at low doses of irradiation. Int J Radiat Biol. 2000;76:1493-1500.

  36. Binder AB, Serafin AM, Bohm LJF. Abrogation of G2/M-phase block enhances the cytotoxicity of daunorubicin, melphalan and cisplatin in TP53 mutant human tumor cells. Radiat Res. 2000;154:640-9.

  37. Akudugu JM, Theron T, Serafin A, Bohm L. Influence of DNA double-strand break rejoining on clonogenic survival and micronucleus yield in human cell lines. Int J Radiat Biol. 2004;80:93-104.

  38. Hirose H, Sakuma N, Kaji N, Suhara T, Sekijima M, Nojima T, Miyakoshi J. Phosphorylation and gene expression of p53 are not affected in human cells exposed to 2.1425 GHz band CW or W-CDMA modulated radiation allocated to mobile radio base stations. Bioelectromagnetics. 2006;27:494-504.

  39. Lantow M, Viergutz T, Weiss DG, Simko M. Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human mono mac 6 cells to radiofrequency radiation. Radiat Res. 2006;166:539-43.

  40. Joubert V, Leveque P, Cueille M, Bourthoumieu S, Yardin C. No apoptosis is induced in rat cortical neurons exposed to GSM phone fields. Bioelectromagnetics. 2007;28:115-21.

  41. Chaung W, Mi L-J, Boorstein RJ. The p53 status of Chinese hamster V79 cells frequently used for studies on DNA damage and DNA repair. Nucleic Acids Res. 1997;25:992-4.

  42. Agulan RTV, Capule EMF, Pobre RF. Effect of pulsed electromagnetic fields on colon cancer cell lines (HCT 116) through cytotoxicity test. Presented at: DLSU Research Congress, vol. 3, De La Salle University, Manila, Philippines; 2015.

  43. Tait SWG, Ichim G, Green DR. Die another way-non-apoptotic mechanisms of cell death. J Cell Sci. 2014;127:2135-44.

  44. Muller PAJ, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15(1):2-8.

CITADO POR
  1. Chinhengo Angela , Serafin Antonio M., Akudugu John, Radiosensitization by Low-Frequency Radiofrequency Fields is Dependent on the Magnitude of the Modulating Frequency , Plasma Medicine, 12, 2, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain